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Struktura atoma i fotonska priroda elektromagnetskog zracenja

1 Struktura atoma i fotonska priroda

elektromagnetskog zracenja

1.1 Molekulski sastav tvari

Mase atoma i molekula se najcesce izrazavaju u atomskim jedinicama mase. Atomska jedi-
nica mase (u) definira se kao 1/12 mase atoma izotopa ugljika 2C, te vrijedi u = 1,66057
10727 kg.

Mogu se definirati sljedece veli¢ine:

Relativna atomska masa A,:

A, =— 1.1
. (11)
gdje je m, masa atoma.
Relativna molekulska masa M,
mpyr
M, = — 1.2
. (12)

gdje je mj; masa molekule.

Zbog postojanja izotopa, atoma istog elementa (istog atomskog broja Z), ali razlic¢ite mase
(razlicitog masenog broja A), relativna atomska masa pojedinog elementa dobiva se uzi-
majuéi u obzir relativne udjele pojedinih izotopa u prirodi. Na primjer, klor posjeduje dva
izotopa: 3°Cl (zastupljenost u prirodi 75,4 %) i 3"Cl (zastupljenost u prirodi 24,6 %). Stoga

je relativna atomska masa klora dana s:
A,(Cl) = 0,754 A,.(*¥Cl) + 0,246 A,(*'Cl) = 35,457 (1.3)

Kolicina tvari se izrazava u jedinici mol, pri ¢emu 1 mol tvari sadrzi toéno odreden broj
cestica (atoma, molekula) te tvari. Po definiciji, mol je koli¢ina tvari sustava koji sadrzi to-
liko Gestica (atoma, molekula, elektrona...) koliko ima atoma u 12 g ugljika '2C. Broj atoma
u 12 g ugljika '2C naziva se Avogadrova konstanta: N = 6,02214076 - 10> mol™" [1].

Prema tome, koli¢ina (mnozina) tvari sustava n dana je s:

N

TL:N—A

(1.4)

gdje je N broj cestica u uzorku.
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Molna masa M se definira kao masa 1 mola neke tvari, odnosno:

m
M=— 1.5
i (15)
gdje je m masa tvari, a n koli¢ina tvari.
Vrijedi:
- M (1.6
m, = A :
M
= 1.7
ma = N (1.7)
Takoder, molni volumen V,,, se definira kao volumen 1 mola neke tvari, odnosno:
\%
V,=— 1.8
- (18)

gdje je V volumen uzorka, a n koli¢ina tvari sustava. Iz Avogadrova zakona slijedi da koli¢ina
tvari 1 mol bilo kojeg plina u istim uvjetima ima jednak volumen koji se naziva molni vo-
lumen plina V,,. Pri normiranim uvjetima (7" = 273,15 K, p = 101325 Pa) molni volumen

iznosi V,, = 22,4 - 107 m3 mol~!.

Faradayev zakon elektrolize

Elektroliza je proces vodenje elektri¢ne struje kroz otopine (tekuéine). U tipiénom ekspe-
rimentu se u polarnoj tekuéini (npr. HoO) otopi elektrolit (npr. NaCl ili neki dugi ionski
kristal), ¢ime nastaje otopina koja sadrzi slobodne nosioce naboja — pozitivno nabijene ka-
tione (Na™) i negativno nabijene anione (C17). Ako se u takvu otopinu urone dvije metalne
elektrode i prikljuce se na izvor istosmjernog napona, kroz otopinu ¢e prolaziti elektri¢na
struja zbog slobodnih kationa i aniona u otopini. Pri ovakvom procesu ¢e se na elektrodi
priklju¢enoj na pozitivan pol baterije (anodi) taloziti anioni (negativni ioni), dok ée se na
elektrodi prikljucenoj na negativan pol baterije (katodi) taloziti kationi (pozitivni ioni), od-

nosno nakupljat ¢e se materijal na elektrodama.

Faradayevi empirijski zakoni elektrolize:

1. Koli¢ina tvari koja se izluc¢i na elektrodi proporcionalna je koli¢ini elektriciteta koji je
prosao kroz elektrolit i vremenu:
m = kIt (1.9)

gdje je m masa izlucena na elektrodi, I struja kroz elektrolit, ¢ vrijeme, a k:

E=— (1.10)

wq
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gdje je M molna masa izrazena u g mol™!, w valencija, a ¢ = 96500 C mol~!.

2. Jednake kolicine elektriciteta izlucuju razlicite tvari u omjeru njihovih atomskih masa:

_Al.AQ

mq Mo -+ .
w; w2

(1.11)

gdje je A maseni broj elementa.

1.2 Rutherfordov eksperiment

U Rutherfordovom eksperimentu se razmatra rasprsenje pozitivno nabijenih ¢estica na tan-
kim metalnim folijama. Cestice koje se rasprduju se nazivaju projektili, a atomi metala
(na kojima se projektili rasprsuju) se nazivaju mete. Rutherford je kao projektile koristio
a-Cestice (jezgre atoma helija, 3He), dok su mete bili atomi zlata, srebra ili bakra. Zbog
puno veée mase atoma metala u odnosu na masu projektila, moze se pretpostaviti da pri
medudjelovanju atoma i projektila atom miruje. Takoder, zbog puno vece mase projektila u
odnosu na masu elektrona, moze se pretpostaviti da pozitivno nabijeni projektili medudjeluju
samo s pozitivno nabijenom jezgrom u atomu (medudjelovanje projektila s elektronima u
atomu mete se moze zanemariti).

Prema tome, opéenito u Rutherfordovom eksperimentu pozitivno nabijeni projektili naboja
Zie upadaju na centar rasprsenja naboja Zse (jezgru atoma mete), pri ¢emu je Z; < Zs.
Zbog elektrostatske odbojne sile izmedu projektila i jezgre atoma mete, projektili skrec¢u sa
svoje prvobitne putanje, tj. rasprsuju se.

Broj projektila koji se rasprsuju unutar odredenog kuta moze se izracunati prema relaciji:

Nond [ Z1Z.¢2\?>  sinf
S ( ! 26) (Sm ~db (1.12)

AN = 2m 8eo sing)
gdje je:

dN - broj projektila koji se rasprsuju u prostornom kutu izmedu 0 i 6 + dé

Ny - broj projektila (po jedinici povrsine i jedinici vremena) koji upadaju na metu
n - koncentracija atoma mete

d - debljina mete

E' - kineticka energija projektila

g0 - permitivnost vakuuma koja iznosi g = 8,854 - 10712 C2 N~! m~2.
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1.3 Bohrov model vodikovog atoma

Spektar vodikovog atoma

Eksperimenti s uzarenim plinovima (gdje se medudjelovanje pojedinih atoma moze zanema-
riti) pokazivali su da plinovi zagrijani na odredenu temperaturu emitiraju elektromagnetske
valove (svjetlost) samo odredene valne duljine. Kirchhoff i Bunsen su jos sredinom 19 st.
zakljucili da svaki element u plinovitom stanju posjeduje karakteristican emisijski linijski
spektar. Takoder, ako se plin na sobnoj temperaturi obasja bijelom svjetloséu (svjetloséu
koja sadrzi sve valne duljine vidljivog dijela spektra), moze se primijetiti da ¢e atomi plina
apsorbirati samo odredene valne duljine. Odnosno, i emisijski i apsorpcijski spektri plinova
su diskretni, tj. sastoje se od diskretnih linija odredenih valnih duljina. Pritom, emisijski
spektar nekog elementa sadrzi sve linije iz apsorpcijskog spektra, ali i neke linije kojih nema
u apsorpcijskom spektru.

Spektralne linije koje se javljaju u spektru plinovitog vodika mogu se izracunati pomocu

a:R(i—i) (1.13)

gdje je ¥ valni broj, R Rydbergova konstanta R = 1,097373 - 10" m~!, a m i n prirodni

empirijske relacije:

brojevi, pri ¢emu je m < n. Valni broj se definira pomoc¢u valne duljine promatrane linije A:

(1.14)

_ 1
DY
Mjerna jedinica valnog broja je m~!.

Spektralne linije vodika se mogu grupirati u tzv. serije. Broj m karakterizira pojedinu seriju
spektra vodikovog atoma:

m = 1 Lymanova serija

m = 2 Balmerova serija

m = 3 Pashenova serija

m = 4 Bracketova serija itd.

Bohrovi postulati

1. Elektron se u atomu kreé¢e po kruznoj putanji oko jezgre pod djelovanjem Coulombove

privlacne sile izmedu jezgre i elektrona te se pokorava zakonima klasi¢ne mehanike.

2. Za razliku od klasicne mehanike, elektron se ne moze kretati po proizvoljnoj orbiti
oko jezgre, veé samo po toéno odredenim (diskretnim) orbitama na kojima ima to¢no
odredene (diskretne) vrijednosti energije (F,). Dozvoljene orbite po kojima se krece

elektron, odredene su iz uvjeta da iznos orbitalnog angularnog momenta elektrona bude
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kvantiziran prema relaciji:

h
=mur =n— (1.15)

[
2T

3. Kada se elektron nalazi u pojedinoj orbiti (odnosno kvantnom stanju) on ne zraci
emisije elektromagnetskog zracenja dolazi pri prijelazu elektrona izmedu dviju orbita,
pri cemu vrijedi da je energija emitiranog fotona hv jednaka razlici energija tih dviju
orbita:

hv =FE, — E,, (1.16)

Analogno, atom moze apsorbirati elektromagnetsko zracenje samo ako je energija

zracenja jednaka razlici energija pocetnog i zavrsnog stanja.

Prema 1. postulatu, elektrostatska privlacna sila izmedu elektrona i jezgre (tj. protona u
slucaju vodikovog atoma) djeluje kao centripetalna sila koja drzi elektron na kruznoj putanji
oko jezgre:

F.=F, (1.17)

1 e m?
—_— = — 1.18
dreg r? r ( )
Pomoéu relacije (1.18) i 2. postulata (relacije 1.15) mogu se izracunati energija i brzina koju

elektron posjeduje u pojedinoj orbiti, kao i polumjer odredene elektronske orbite:

e kineticka energija K, i potencijalna energija U, elektrona na n-toj orbiti dane su s:

meet 1
o e 1.19
8c&h? n? (1.19)
meet 1
U, = — - 1.20
4e2h? n? (1.20)
gdje je:
me - masa elektrona m, = 9,11 - 1073! kg
e - naboj elektrona e = 1,602 - 10~ C
g0 - permitivnost vakuuma eg = 8,854 - 1072 C? N~! m~2
h - Planckova konstanta h = 6,626 - 10734J s
e cnergija n-tog stanja:
E,=K,+U mee L 136 ev). - (1.21)
= n=— _— = — s e - —_— .
" " 8gh? n? n?
e polumjer n-te orbite:
Tn = Sn° = apn (1.22)
Tmee
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gdje je ag = 0,529 - 107'% m polumjer orbite osnovnog stanja (Bohrov polumjer)

e brzina elektrona u n-toj orbiti:
el
~ 2e0hn

Un (1.23)

1.4 Ioni sliéni vodiku
Bohrova teorija se, osim na vodikov atom, moze primjeniti i na ione s jednim elektronom u
elektronskom omotacu (na primjer He™ ili Li**). Vrijedi:

e energija n-tog stanja:

mee* 72 7?2
E, — — 2 (—136 V) 1.24
8c2h? n? ( ¢ )n2 (1.24)

gdje je:

me - masa elektrona m, = 9,11 - 1073! kg

e - naboj elektrona e = 1,602 - 107 C

g0 - permitivnost vakuuma ey = 8,854 - 1072 C?> N~! m~
h - Planckova konstanta h = 6,626 - 10734J s

Z - atomski broj elementa (broj protona u jezgri)

2

e polumjer n-te orbite:

h%ey n? n?

_ g 1.2
n Tmee2 Z aOZ (1.25)

gdje je ag = 0,529 - 1071° m polumjer orbite osnovnog stanja (Bohrov polumjer).

Spektralne linije iona slicnih vodiku se mogu izrac¢unati pomocu relacije:

v=RZ? <i - i) (1.26)

gdje je v valni broj, R Rydbergova konstanta, m kvantni broj poc¢etnog stanja, a n kvantni
broj konacnog stanja.
Koristedi relacije (1.16) i (1.21) moze se dobiti Rydbergova empirijska formula (1.13) za valne

duljine koje se javljaju u spektru plina vodika.
1.5 Rendgensko zracenje

Rendgenska cijev se sastoji od dviju elektroda (anode i katode), smjestene u vakuumsku cijev.
Zagrijavanjem katode dolazi do emisije elektrona iz katode te se elektroni ubrzavaju u visokoj

razlici potencijala U (najcesée nekoliko desetaka tisuca volta) prema anodi. Prilikom sudara

6
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elektrona visoke energije s anodom, dolazi do emisije rendgenskog zracenja s te elektrode.

Spektar rendgenskog zracenja se sastoji od dva dijela:

1. Kontinuirani dio rendgenskog spektra - nastaje jer se elektroni rasprsuju na jezgrama
atoma u anodi i usporavaju. Prema klasi¢noj elektrodinamici, nabijena cestica koja us-
porava emitira elektromagnetsko zracenje (zako¢no zracenje ili Bremsstrahlung). Ener-
gija emitiranog fotona jednaka je razlici pocetne i konacne energije elektrona. Buduéi
da elektron moze gubiti proizvoljne iznose svoje kineticke energije, nastaje kontinuiran
spektar. Maksimalna energija zracenja nastaje ako sva kineticka energija elektrona

prijede u elektromagnetsko zracenje:

hmax = €U (1.27)

2. Diskretni dio rendgenskog spektra — nastaje jer ubrzani elektroni izbijaju elektrone
iz unutrasnjih ljuski atoma anode, te na njihovo mjesto dolaze elektroni iz visih lju-
ski. Kao posljedica tog procesa emitira se kvant energije (foton) koji odgovara razlici
energija pripadnih elektronskih stanja. Prema empirijskom Mosleyevom zakonu linije

diskretnog spektra dane su izrazom:

1 1
_ 2
gdje je R Rydbergova konstanta, Z atomski broj elementa od kojeg je gradena anoda, m
glavni kvantni broj pocetne razine, n glavni kvantni broj konacne razine, a b konstanta

koja karakterizira danu liniju (npr. za K, liniju b =1, za L, b = 7,4).
1.6 Alkalni atomi

Alkalni atomi su jednovalentni atomi, odnosno atomi s jednim valentnim elektronom (na
primjer Li, Na, Cs itd.). Zbog odbojnog elektrostatskog medudjelovanja izmedu valentnog
elektrona i elektrona na unutarnjim orbitalama, moze se razmotriti model prema kojem na
valentni elektron ne djeluje cijeli naboj jezgre atoma (Ze), veé se energijske razine valentnog
elektrona mogu aproksimirati jednoelektronskim atomom, pri ¢emu na taj elektron djeluje
pozitivan naboj Z.ge (gdje je Zeg < Z). Ovakva pojava se naziva zasjenjenje jezgre, tj.
valentnom elektronu pozitivno nabijenu jezgru ,,zasjenjuju‘ elektroni na unutarnjim orbita-
lama. Iznos Z.s ovisi o orbitali na kojoj se nalazi valentni elektron, tj. Zeg = Zeg(n,l).

Energijske razine valentnog elektrona alkalnog atoma mogu se aproksimirati izrazom:

Rhe

Bn,t) = - n— A, )]

(1.29)
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gdje je R Rydbergova konstanta za dani element, h Planckova konstanta, ¢ brzina svjetlosti,
n glavni kvantni broj stanja, a A(n, () kvantni defekt koji osim o n ovisi i o orbitalnom kvant-
nom broju [. Za prijelaz elektrona s jedne energijske razine na drugu mora biti zadovoljen
uvjet Al = +1.

1.7 Struktura atoma

Stanje elektrona u atomu karakterizirano je s ¢etiri kvantna broja:

— Glavni kvantni broj n — odreduje ljusku u kojoj se nalazi elektron. Ljuske koje pripa-

daju kvantnim brojevima n = 1, 2, 3, 4, ... oznacavaju se redom slovima K, L, M, N,

— Orbitalni kvantni broj [ — odreduje podljusku u kojoj se nalazi elektron. Za dani

glavni kvantni broj n, [ moze poprimiti vrijednosti 0, 1, 2, 3, ..., n — 1. Podljuske koje
pripadaju kvantnim brojevima [ = 0, 1, 2, 3, ... oznacavaju se redom slovima s, p, d,
f, ..

— Magnetski orbitalni kvantni broj m; — za dani orbitalni kvantni broj [, m; moze popri-
miti vrijednosti —{, —{+ 1, -1 +2,...,1 —2,1 —1,1.

— Magnetski spinski kvantni broj m, moze poprimiti vrijednosti i%.

Opcenito, u viseelektronskim atomima, energija elektrona ovisi o kvantnim brojevima n i
[, odnosno o ljusci i podljusci u kojoj se nalazi elektron. Pri prijelazu elektrona iz jednog
kvantnog stanja u drugo moraju biti zadovoljeni uvjeti Al = £1, Am; = 0, £1. Bez prisustva
vanjskog magnetskog polja kvantni brojevi m; i mg ne utjecu na energiju elektrona.

Elektron u atomu posjeduje dva angularna momenta:

1. Orbitalni angularni moment [- posljedica orbitalnog gibanja elektrona u podruc¢ju oko

(f‘ — I+ 1) (1.30)

gdje je h reducirana Planckova konstanta (ﬁ = %) Projekcija obitalnog angularnog

jezgre atoma:

momenta na os z moze poprimiti vrijednosti [, = hm;.

2. Spinski angularni moment § - vlastiti (intrinzi¢ni) angularni moment elektrona:
5] = h/s(s+ 1) (1.31)

Elektron je Cestica spina s = % pa spinski angularni moment elektrona ima vrijednost

h\/g. Projekcija spinskog angularnog momenta na os z moze poprimiti vrijednosti

s, = hmg = i%h.
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—

Ukupni angularni moment j definira se kao j = [+ 5 te ima vrijednost:

-

J

— i/ + 1) (1.32)

pri ¢emu kvantni broj j moze poprimiti vrijednosti j = |l — s|,|l — s|+1,...,l+s. Projekcija
ukupnog angularnog momenta j na os z ima vrijednosti j, = hm; pri cemu m; poprima
vrijednosti m; = —j,—j7 +1,...,7 — 1,7 za dani j. S elektronom se povezuju magnetski

dipolni momenti:

— magnetski orbitalni dipolni moment:

= —%l (1.33)
te vrijedi:
4| = %h 0+1) (1.34)
1l = /10 T 1) (1.35)
gdje je ug Bohrov magneton:
HB = % (1.36)
iiznosi ug = 9,274-1072# J T~ =5788-107% eV T}
— magnetski spinski dipolni moment:
- €
fis = =5 (1.37)
te vrijedi:
7] = 2um/5(5 + 1) (1.38)

— ukupni magnetski dipolni moment /;:

5| = peg Vi + 1) (1.39)

gdje je g Landeov faktor definiran kao:

JE+1) +s(s+1)—1(1+1)

g=1+
2j(j +1)

(1.40)

1.8 Viseelektronski sustavi

Razmatra se viseelektronski atom (atom s n elektrona). Definira se:
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— L — ukupni orbitalni kvantni broj atoma (stanja koja pripadaju kvantnim brojevima

L=0,1,2,3,... oznacavaju se velikim slovima S, P, D, F,...)
— S — ukupni spin atoma.
Ukupni orbitalni angularni moment atoma:

L|=nh/L(L+1) (1.41)

Ukupni spinski angularni moment atoma:

‘5*‘ —h/S(S+1) (1.42)

Ukupni angularni moment atoma:

‘f‘ = /I +1) (1.43)

gdje u slucaju LS interakcije vrijedi J = |L — S|, |L — S|+1,..., L+ S. Projekcija ukupnog
angularnog momenta J na os z ima vrijednosti J, = hM; pri ¢emu M; poprima vrijednosti
M; =—-J—-J+1,...,J —1,J za dani J. Kvantno stanje atoma oznacava se kao 2541,

Magnetski dipolni momenti atoma:

— magnetski orbitalni dipolni moment:
pip, = ——L (1.44)

te vrijedi:
e
ir,| = —hy/L(L+1 1.45
| = 5 hy/I(L+ 1) (1.45)

hL| = pev/ L(L +1) (1.46)

gdje je ug Bohrov magneton:

eh
= 1.47
KB om ( )
i iznosi pp = 9,274-1072 J T-1 =5,788-107% eV T}
— magnetski spinski dipolni moment:
. ez
fig = ——3S5 (1.48)
m
te vrijedi:
15| = 2pB\/S(S + 1) (1.49)
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— ukupni magnetski dipolni moment fi7:
k5| = peg/ J(J +1) (1.50)

gdje je g Landeov faktor definiran kao:

JJ+1)+S(S+1)— L(L+1)

—1
g=1+ 2J(J + 1)

(1.51)

Projekcija ukupnog magnetskog momenta na os z dana je s (p;), = gusM,.

1.9 Zeemanov efekt

Zeemanov efekt je pojava cijepanja energijskih razina atoma (a time i spektralnih linija
atoma) u vanjskom magnetskom polju B. Do njega dolazi jer elektron posjeduje magnetski
moment /i koji interagira s vanjskim magnetskim poljem. Opéenito, u vanjskom magnetskom
polju ¢e na cesticu koja posjeduje magnetski moment djelovati moment sile 7 = i x E, koji
nastoji zakrenuti smjer dipolnog momenta u pravcu vanjskog polja. Takoder, svaka cCestica
koja posjeduje magnetski dipolni moment f u vanjskom magnetskom polju B dobiva do-
datnu energiju U = —i - B.

Normalni Zeemanov efekt — promatra se medudjelovanje magnetskog polja samo s orbitalnim
magnetskim momentom atoma (spin se zanemaruje). Ako uzmemo da je vanjsko magnet-
sko polje usmjereno duz osi z tada ée se kod jednoelektronskih sistema (atoma s jednim

elektronom i alkalnih atoma) energija elektrona promijeniti za iznos:
U= pupmB (1.52)

gdje je up Bohrov magneton, B magnetsko polje, a m; magnetski orbitalni kvantni broj
elektrona. Kod anomalnog Zeemanovog efekta razmatra se ukupni magnetski dipolni mo-
ment elektrona (orbitalni i spinski magnetski dipolni moment) te je cijepanje energijske linije

elektrona u magnetskom polju B tada dano s:
U=gupm;B (1.53)

gdje je g Landeov faktor, up Bohrov magneton, B magnetsko polje, a m; poprima vrijednost
mj =j,—j+1,...,7 —1,j za dani j. U vanjskom magnetskom polju é, totalni angularni

moment J precesira oko smjera magnetskog polja kruznom frekvencijom:

gupB
w =

5 (1.54)
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Pri prijelazima atoma iz jednog stanja u drugo trebaju biti zadovoljena sljedeca pravila za
promjenu kvantnih brojeva: AJ = 0,=£1 (osim za prijelaze J =0 u J = 0), AM; = 0, %1,
AS =0, AL = 0,+1. Za jednoelektronske sisteme prijelazna pravila su: Aj = 0,41 (osim
za prijelaze j =0u j =0), Am; =0,+1, Al = £1.

1.10 Fotoelektricni ucinak

Fotoelektriéni ucinak (fotoelektriéni efekt) je pojava emisije elektrona iz metala pod djelo-
vanjem elektromagnetskog (EM) zrac¢enja. Najjednostavniji oblik eksperimenta povezan s
fotoelektricnim uc¢inkom moze se izvesti u fotocijevi, vakuumskoj cijevi koja se sastoji od
dviju elektroda — katode i anode. Kada se katoda izlozi EM zracenju odredene frekvencije,
EM zracenje uzrokuje emisiju elektrona s katode. Ako se na katodu i anodu prikljuéi razlika
potencijala Upc elektroni bivaju privuceni pozitivnijim potencijalom na anodi i strujnim
krugom prolazi struja.

Eksperimentalni rezultati su pokazali sljedece:

— Do fotoemisije elektrona s katode dolazi samo ako je frekvencija EM zracenja v veca
od neke grani¢ne vrijednosti v,. Pritom, grani¢na frekvencija ovisi o metalu od kojeg

je nacinjena katoda. Za vec¢inu metala v, je u ultraljubicastom podrucju.

— Neki elektroni se s katode emitiraju s velikim poc¢etnim brzinama (kinetickim energi-
jama). Naime, ako se anoda prikljuéi na nizi potencijal u odnosu na katodu, opaza se
smanjenje fotostruje, a za Uyc = —U, struja fotoelektrona se smanjuje na nulu gdje
je U, zaustavni napon. Prema tome, za Uyc = —U, zaustavljaju se fotoelektroni s

najvecom kinetickom energijom K, .is, odnosno vrijedi elU, = K axs-

— Zaustavni napon U, ne ovisi o intenzitetu svjetlosti, dok vrijednost zaustavnog na-
pona (a time i najveéa kineticka energija fotoelektrona) raste linearno s poveéanjem

frekvencije EM zracenja.

Navedeni eksperimentalni rezultati se nisu mogli objasniti s valnom teorijom EM zracenja,
vec je za objasnjenje fotoelektricnog ucinka bio potreban novi model kojim ¢e se opisati prije-
nos energije izmedu EM zracenja i materije. Albert Einstein je 1905. godine dao objasnjenje
fotoelektricnog ucinka na temelju pretpostavke da je energija EM zracenja koncentrirana u
lokaliziranim paketima (kvantima). Pri tome je energija kvanta EM zracenja (fotona) jed-
naka hv gdje je h Planckova konstanta, a v frekvencija EM zracenja.

Prema Einsteinu, fotoelektri¢ni ucinak je medudjelovanje elektrona s jednim fotonom:

— ako je hv > W; — foton se apsorbira od strane elektrona (elektron se emitira s povrsine

metala)

12
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— ako je hv < W; — foton se nece apsorbirati od strane elektrona (elektron se ne emitira

s povrsine metala)

gdje je W izlazni rad za dani metal, odnosno energija koju treba predati metalu na apsolutnoj
nuli da bi slobodni elektroni najvece energije mogli svladati privlacne sile koje ih vezuju za
metal i emitirati se s njegove povrsine.

Najmanja energija potrebna da se emitira elektron je za v = v, te vrijedi hyy, = Wi. Za

v > v, energija fotona se utrosi na izlazni rad i kineticku energiju fotoelektrona:
E; =W + Kpaks (1.55)

gdje je E energija fotona frekvencije v (valne duljine \):

E; = hv (1.56)
Ef=hs (1.57)

a najveca kineticka energija koju mogu dobiti elektroni pri fotoelektricnom uc¢inku K .xs

moze se zapisati kao:

mU2

Kmaks = %ks (158)

Vrijednost K .xs se ekperimentalno odreduje mjereéi zaustavni napon U, §to je je najmanja
vrijednost napona koju treba prikljuciti u odnosu na metal da bi se u potpunosti zaustavili
fotoelektroni te vrijedi:

elU, = Kiaks (1.59)

1.11 Comptonovo rasprsenje

Comptonovo rasprsenje (Comptonov efekt) je pojava rasprsenja elektromagnetskog zracenja
malih valnih duljina (rendgenskog zracenja ili gama-zracenja) na slabo vezanim elektronima
u materijalu (slika 1). Eksperimenti Arthura Comptona su 1922. godine pokazali da ako
rendgensko zracenje valne duljine A upada na materijal, dio rasprSsenog zracenja ima vecu
valnu duljinu od upadnog zracenja odnosno X' > A. Pri tome, valna duljina rasprsenog
zracenja A ovisi o kutu rasprsenja 6.

Comptonovi eksperimentalni rezultati se nisu mogli objasniti valnom prirodom EM zracenja,
veé koristenjem fotonskog modela. Prema fotonskom modelu EM zracenja, ova pojava se
razmatra kao sudar dviju cestica (elektrona i fotona) te se koriste zakoni ocuvanja energije

i impulsa (prije i poslije sudara):

— zakon oCuvanja energije:
E;+E.=E/{+E/ (1.60)
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gdje je:
E; - energija fotona prije sudara (Ef = hyc)
E. - energija elektrona prije sudara (ako se pretpostavi da elektron prije sudara miruje,

odnosno ima mnogo manju brzinu od fotona, vrijedi E, = mc?)

.. hc
E{ - energija fotona nakon sudara (Ef’ = 7)
E/ - energija elektrona nakon sudara
— zakon ocuvanja koli¢ine gibanja:
Pf + De = Pf + Pe (1.61)

gdje je:

p7 - kolicina gibanja fotona prije sudara

e - koli¢ina gibanja elektrona prije sudara (ako se pretpostavi da elektron prije sudara
miruje, odnosno ima mnogo manju brzinu od fotona, vrijedi p. = 0)

p—; - koli¢ina gibanja fotona nakon sudara

—
pe - koli¢ina gibanja elektrona nakon sudara

Upadni foton

Slika 1: Comptonovo rasprsenje [4]

Pri razmatranju Comptonovog rasprsenja trebaju se koristiti relativisticki izrazi za impuls i

energiju elektrona. Energija elektrona je dana s relacijom:
E,=mc®+ K (1.62)
dok je veza izmedu energije i koli¢ine gibanja:

E? = (m02)2 + (pec)? (1.63)
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gdje je K kineticka energija elektrona, m masa mirovanja elektrona, a p. koli¢ina gibanja.

Kolic¢ina gibanja fotona je dana s:

h
Pr=x (1.64)

dok je veza izmedu energije i koli¢ine gibanja fotona:
Ef = pr (165)

Iz gornjih izraza se moze izvesti relacija za promjenu valne duljine EM zracenja pri Comp-

tonovom rasprsenju:

h
A=N - IA=—(1- 6 1.
A= =) mc( cost) (1.66)

gdje je A valna duljina svjetlosti prije rasprsenja, A’ valna duljina svjetlosti nakon rasprsenja,
m masa elektrona, a 6 kut rasprsenje fotona. Takoder, kut pod kojim se elektron rasprsi

nakon medudjelovanja s fotonom (u odnosu na upadni foton) moze se izracunati iz relacije:

AN sin 0

tan p = ——————
any A— MNcost

(1.67)
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2 Schrodingerova jednadzba i primjene

2.1 Valna svojstva cCestica

Prema de Broglievom postulatu svakoj cestici impulsa (koli¢ine gibanja) p pridruzena je

valna duljina A prema relaciji:
h
A= — (2.1)
p

gdje je h Planckova konstanta.
U nerelativistickoj aproksimaciji (K < Fy, K — kineticka energija Cestice, Ey = mc* -

energija mirovanja) vrijedi:

p=mu (2.2)
2
p
K=— 2.3
v (2.3)

gdje je v brzina cCestice. Ako uvjet K < Ej nije zadovoljen trebaju se koristiti relativisticke

jednadzbe za energiju:

E =K +mdc (2.4)
E? = (m?)” + (pe)? (2.5)
i koli¢inu gibanja:
muv

P=—"F— (2.6)
Ji-x=

Cestica se u kvantnoj fizici opisuje valnom funkcijom. Za razliku od ravnog vala koji je
potpuno delokaliziran te ima dobro definiranu valnu duljinu A (odnosno valni broj k), ¢estica
se zamislja u obliku valnog paketa — superpozicije (zbroja) velikog broja ravnih valova, koji
se §iri prostorom i koji je lokaliziran u jednom dijelu prostora. Valni paket sadrzi velik broj
valnih brojeva te opcéenito kruzna frekvencija pokazuje funkcijsku ovisnost o valnom broju,
tj. vrijedi w = w(k), a valni brojevi ravnih valova se kontinuirano mijenjaju duz nekog
intervala.

Razmatra se obitelj sinusoidalnih valova (istih amplituda) s kontinuiranim raspodjelama
valnih brojeva k oko vrijednosti kg (zbog jednostavnosti se zanemari vremenska ovisnost u
valnoj jednadzbi):

Ak Ak

Potrazi se superpozicija takvih valova:

yuwa/%uMk (2.8)
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Vrijedi:
y(x) = 24 sin(Akz) cos(kox) (2.9)

T

Ovakav valni oblik se zove valni paket. Clan % sin(Akx) opisuje envelopu valnog paketa,
dok faktor cos(kox) opisuje prostorne oscilacije unutar envelope. Valni paket je entitet koji
posjeduje i Cesticna i valna svojstva odnosno lokaliziran je u dijelu prostora (svojstvo Cestice)
i pokazuje periodi¢ne oscilacije u dijelovima prostora (valno svojstvo).

Razlikuju se grupna i fazna brzina valnog paketa (brzina oscilacija unutar valnog paketa
moze biti razli¢ita od brzine kojom valni paket putuje kroz prostor). Grupna brzina v, je

brzina kojom se valni paket Siri prostorom:

dw
= 2.1
Ug dk ( 0)
gdje je w kruzna frekvencija, a k valni broj definiran kao:
27
k=— 2.11
. (211)
Fazna brzina v, je brzina kojom se Siri mjesto iste faze:
w
== 2.12
Vs = (2.12)

2.2 Heisenbergove relacije neodredenosti

U kvantnoj mehanici se ne mogu istovremeno mjeriti odredene fizicke veli¢ine npr. impuls i
polozaj (koordinata) Gestice ili energija i vrijeme. Sto se bolje poznaje impuls Gestice, ima
se manje informacija o njenom polozaju i obratno. To je posljedica Heisenbergovih relacija

neodredenosti:
Az -Ap>h (2.13)

gdje je Az neodredenost koordinate cCestice, a Ap neodredenost impulsa Cestice. Stroga

definicija neodredenosti neke fizicke velicine y je:
Ay =\/y* -7 (2.14)
gdje je ¥ prosjecna vrijednost fizicke veli¢ine y, a y2 prosjeéna vrijednost od 2.

Takoder vrijedi:
AE-At>h (2.15)

gdje je AFE neodredenost energije Cestice, a At neodredenost vremena.
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2.3 Schrodingerova jednadzba u jednoj dimenziji

U kvantnoj mehanici Cestica (sistem) se opisuje pomocu valne funkcije. Valna funkcija se
dobiva rjesavanjem Schrodingerova jednadzbe za dani problem. Schrédingerova jednadzba je
postulat (ona se ne izvodi) i njeno znacenje u kvantnoj mehanici je slicno drugom Newtono-
vom postulatu u klasi¢noj fizici. Prema tome, temeljna jednadzba nerelativisticke kvantne
mehanike je Schrodingerova jednadzba:

n 0*v v

om0 + U(z, t)¥ = Zﬁa (2.16)

To je parcijalna diferencijalna jednadzba drugog reda pri ¢emu je U (x, t) potencijalna energija
u kojoj se krece cestica, a W(z,t) valna funkcija cestice.

Za danu potencijalnu energiju U(x, t) rjesavanjem Schrodingerove jednadzbe dobiva se valna
funkcija cestice W¥(x,t). Valna funkcija Cestice sadrzi sve informacije koje se mogu saznati
o cestici. Ako potencijalna energija ne ovisi o vremenu U = U(x), moze se pokazati da
¢e energija Cestice (sistema) biti o¢uvana u vremenu (E = konst.). Ovakva stanja sistema
(Cestice) se nazivaju stacionarnim stanjima, bududi da je energija sistema oCuvana u vremenu.

U tom slucaju rjesenje Schrodingerove jednadzbe je dano s:
U(x,t) = p(x)e ™ (2.17)

gdje je fukcija v rjesenje stacionarne (vremenski neovisne) Schrodingerove jednadzbe:

—5— 5 T U@)y(x) = EY(x) (2.18)

a F je ukupna energija cestice (iz de Broglievog postulata E = hw). Funkcija ¢(x) se naziva
i prostorni dio valne funkcije. Za veé¢inu jednostavnih problema u kvantnoj mehanici potenci-
jalna energija ne ovisi o vremenu i problem se svodi na rjeSavanje stacionarne Schrédingerove
jednadzbe. Rjesavanjem jednadzbe (2.18) dobivaju se vrijednosti valnih funkcija i energija
Cestice (sistema).

Ne moze se odrediti tocan polozaj ¢estice veé¢ samo vjerojatnost da se Cestica nalazi u nekom

dijelu prostora. Gustoca vjerojatnosti dana je s:
p(x,t) = U(x, )V (2, t) = |V(z,1)|? (2.19)

pri ¢emu je U*(z,t) konjugirano kompleksna vrijednost funkcije W(x,t).

Vjerojatnost nalazenja cestice u dijelu prostora omedenog koordinatama z; i x5 jednaka je:

w = /w p(x,t)dz (2.20)

1
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U slucaju da potencijalna energija ne ovisi o vremenu, dovoljno je razmatrati samo prostorni

dio valne funkcije, buduéi da vrijedi:

plx,t) = |¥(z,t)|* = [ (2)[* (2.21)

Vjerojatnost nalazenja cestice u dijelu prostora omedenog koordinatama z; i x, tada je

jednaka:

w = / () Pz (2.22)

1
Buducdi da ¢e se u sklopu kolegija Moderna fizika I proucavati samo slucajevi kada potenci-
jalna energija ne ovisi o vremenu, nadalje ¢e se razmatrati samo stacionarna Schrodingerova
jednadzba i prostorni dio valne funkcije ¢ (), koji ¢e se, zbog jednostavnosti, zvati valna
funkcija cestice (budué¢i da je vremenski dio predstavljen samo fazom valne funkcije e=** i
ne utjece na vjerojatnost nalazenja cestice u prostoru).

Svojstva valne funkcije ¥ (z):

a) Uvjet normalizacije valne funkcije:

/oo o (@)|2dz = 1 (2.23)

—00

b) U Schrédingerovoj jednadzbi se pojavljuje druga derivacija valne funkcije CRCICOR

dx?
bi funkcija () imala drugu derivaciju ¥ (x) i %gf) trebaju biti neprekidne funkcije.

c¢) Valna funkcija reprezentira vjerojatnost nalazenja cestice u prostoru — rjesenja Schrodingerove
jednadzbe koja teze u beskonac¢nost u nekom dijelu prostora odbacuju se kao nefizi-

kalna.
d) Vjerojatnost nalazenja cestice u dijelu prostora a < z < b: fab | (z)|?da.

e) Prosjeéna (ocekivana) vrijednost fizicke velicine f(z) za Cesticu u stanju opisanom

valnom funkcijom v (z):

(f(x) = / " (@) P f(a)da (2.24)

o

2.4 Slobodna c¢estica

Slobodnom ¢esticom se naziva Cestica koja se giba u konstantnom potencijalu, U(z) = konst.
Tada se moze staviti U(z) = 0 (jer se nulta razina potencijalne energije moze proizvoljno
birati). Stacionarna Schrodingerova jednadzba za ovakav problem je dana s:
h? d?
LS (2.25)

2m dz?
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Rjesenje Schrodingerove jednadzbe za Cesticu s energijom F je tada dano s:
Y(r) = Ae™™™ + Be e (2.26)
gdje su A i B brojcane konstante (amplitude ravnog vala), a parametar k:

omE
k=4 :2 (2.27)

Prvi dio predstavlja ravni val koji se 8iri u pozitivhom smjeru osi x, a drugi dio je ravni val

koji se Siri u negativnom smjeru osi . Energija E cestice i valni vektor £ mogu poprimiti

proizvoljne vrijednosti (nisu kvantizirani).

2.5 Cestica u jednodimenzionalnoj kutiji (beskonacna

pravokutna potencijalna jama)

Pretpostavlja se da je Cestica zatocena u dijelu prostora 0 < x < L i da ne moze izadi iz
njega (slika 2). Ovakav jednostavni model se moze primijeniti npr. na slucaj elektrona koji
se giba duz konacne nanozice (gibanje je ograni¢eno na jednu dimenziju).

Potencijalna energija za ovakav problem dana je s:

Ulx)=0 za 0<z<L
(2.28)
Ulx)=00 za z=0izx=L

A F 3

x=0 x=:L

Slika 2: Beskonacna pravokutna potencijalna jama

Problem se svodi na rjeSavanje vremenski neovisne Schrodingerove jednadzbe uz rubne
uvjete:
Y(x)=0 za z=01ix=1L (2.29)
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Koristi se uvjet na neprekidnost valne funkcije: izvan kutije je 1(x) = 0 (Cestica ne moze
izaéi iz kutije), pa istu vrijednost valna funkcija treba imati i u rubnim tockama =z = 0 i
x = L. RjeSenja stacionarne Schrodingerove jednadzbe (odnosno valne funkcije i energije

Cestice) uz dane rubne uvjete su:

n(x) = \/%sin (%x) (2.30)

" 8mL?

Vidi se da je energijski spektar kvantiziran, tj. ¢estica moze poprimiti samo odredene (dis-

n=1,234,... (2.31)

kretne) vrijednosti energije.

2.6 Cestica u konaénoj pravokutnoj potencijalnoj jami

U ovom se slu¢aju razmatra gibanje ¢estice u potencijalu oblika (potencijalnoj jami sa zido-

vima konacne visine):
Ulx)=Uy za <0 i z>1L

(2.32)
Ux)=0 za 0<z<L

U:UO U:UO

Slika 3: Konac¢na pravokutna potencijalna jama

Rjesavanje Schrodingerove jednadzbe se razlikuju ovisno vrijedi li za energiju cestice da je
E < Uy (vezana stanja — ¢estica je vezana za podrucje oko potencijalne jame) ili £ > Up (ne-

vezana stanja — Cestica se ponasa kao slobodna cestica). RjeSenje stacionarne Schrodingerove

21



Schrodingerova jednadzba i primjene

jednadzbe za vezana stanja (E < Up) je dano s:

2mkE
h2
2m(Uy — E) (2.33)
h2

Y(x) = Asinkx + Beoskxr za 0 <z <L gdjejek=

Y(x)=Ce® za v <0 gdjejeyx=

Y(x)=De ™ za xz>1L

Napomena: Energija ¢estice E je kvantizirana (poprima samo odredene, diskretne vrijed-
nosti), ali se ne moze izraziti analicki kao u slucaju beskonacne jame. Konstante A, B, C
i D se odreduju iz uvjeta neprekidnosti valne funkcije i njezine prve derivacije u tockama
x=01x = L. Kao i u slucaju beskonacne potencijalne jame, unutar jame je valna funkcija
sinusoidalnog oblika, medutim valna funkcija sada ne iS¢ezava u tockama z = 01iz = L, vet

eksponencijalno opada u podruc¢jima izvan potencijalne jame.

2.7 Pravokutna potencijalna barijera i tuneliranje

Potencijalna barijera predstavlja fizicki problem u kojem potencijalna energija sistema ima
najvecu vrijednost. Najjednostavniji slucaj potencijalne barijere je pravokutna potencijalna

barijera, koju se moze predstaviti potencijalnom energijom oblika:

Ulx)=Uy za 0<z<L

(2.34)
Ulx)=0 za <0 i z>1L

Ovdje vrijednost Uy predstavlja visinu potencijalne barijere, a L Sirinu potencijalne barijere.

Slika 4: Pravokutna potencijalna barijera

Razmatra se cestica s energijom F < Uy koja je u pocetnom trenutku u podrucju = < 0
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(lijevo od barijere). Rjesenje stacionarne Schrodingerove jednadzbe je dano s:

2mE
h2
2m (U — E) (2.35)
h2

() = Ae™ + Be ™™ za £ <0 gdjejek =

P(r) =CeX™ + De™ za 0<x <L gdiejex=

Y(z) = Fe™ za x> 1L

Clan Ae™* predstavlja upadni ravni val (Cestica upada na barijeru iz podruéja = < 0), dok
ke yeflektirani val (postoji vjerojatnost refleksije cestice na barijeri). S druge strane,

ikx

je Be™
¢lan Fe™ je transmitirani val (slucaj kada cestica prode barijeru). Za 0 < z < L valna funk-
cija je opadajuca eksponencijalna funkcija. Konstante B, C', D i F' se odreduju iz uvjeta
neprekidnosti valne funkcije i njezine prve derivacije u tockama x = 01 x = L (konstanta A
je amplituda upadnog vala i ona se uzima kao zadana veli¢ina za ovaj problem).

U slucaju pravokutne potencijalne barijere, dvije su znacajne razlike izmedu kvantnome-

hanickog i klasi¢nog opisa problema:

e valna funkcija nije jednaka nuli unutar potencijalne barijere (zabranjeno podruéje

prema klasi¢noj fizici!)

e cCestica koja se u pocetnom trenutku nalazila u podrucju z < 0 ima odredenu vjerojat-

nost da se nade u podrucju = > L.

Pojava da cestica moze ,,prije¢i” potencijalnu barijeru iako ima energiju nizu od visine bari-

jere se naziva tuneliranje. Vjerojatnost tuneliranja je dana s:

_ |amplituda transmitiranog vala?  |F|?

r= lamplituda upadnog vala|? | AJ2 (2.36)

Vrijedi:
T =Ge >t (2.37)

gdje je:
6= (1 - %) (2.38)
= W (2.39)
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2.8 Linearni harmonijski oscilator

Po deiniciji linearni harmonijski oscilator je Cestica (sistem) koji se giba u polju potencijalne
energije oblika U(x) = mT“’Za:Q gdje je m masa Cestice, a w kruzna frekvencija. RjeSenja
stacionarne Schrodingerove jednadzbe za potencijalnu energiju ovakvog oblika su funkcije:
e mw
Un(z) = Ape” 3% H, ( 79;) . n=0,1,2,3,4,... (2.40)
gdje su A, normalizacijske konstante, a funkcije H,(x) se zovu Hermiteovi polinomi.

Energija linearnog harmonijskog oscilatora dana je s:

e (v ) an

U slucaju linearnog harmonijskog oscilatora, kvantni broj n u potpunosti odreduje kvantno

stanje cestice, tj. valnu funkciju i energiju ¢estice. Prvih nekoliko Hermiteovih polinoma:

Ho(y) =1
H =2
1(y) y2 (2.42)
Hy(y) =4y~ — 2
Hy(y) = 8y° — 12y
pri cemu je y = /=T
2.9 Schrodingerova jednadzba u 3-D
Stacionarna Schrodingerova jednadzba u 3-D ima oblik:
R: (d*p A% d*

Svojstva Schrodingerove jednadzbe te valne funkcije su ista kao i kod 1-D slucaja, samo sto
su sada valna funkcija i potencijalna energija cestice funkcije tri prostorne koordinate x, y i

z. Vjerojatnost nalazenja cestice u dijelu prostora volumena V' je sada dana s:

w:/ [U(z,y, 2)[Pderdydz (2.44)
v

Uvjet normalizacije valne funkcije je sada:
/ 1U(z,y, 2)Pdedydz = 1 (2.45)
v
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gdje volumen V' obuhvaca cijeli prostor.

2.10 Cestica u 3-D kutiji

Pretpostavlja se da je gibanje cestice ograniceno u dijelu prostora 0 < x < L, 0 < y < L,
0 < z < L (Cestica je zarobljena u dijelu prostora oblika kocke i ne moze izadi iz njega).

Potencijalna energija za ovakav slucaj moze se predstaviti s:

U(@,y,2) =0 za 0<z<L0<y<L 0<z<L (2.46)
Ulx,y,z) =00 za x=0,L,y=0,L;2=0,L '

Rjesava se Schrodingerova jednadzba u 3-D u dijelu prostora 0 < z < L, 0 < y < L,

0 < z < L (izvan je valna funkcija jednaka nuli):

R: (d*  dxp d%
o + + = F 2.47
2m (d:c2 dy? = dz? ) Ylz,y,2) (247)

Rubni uvjeti za ovakav problem su dani s:

Y(z,y,2) =0 za =0 1 z
U(@,y,2) =0 za y=0 1 y
Y(z,y,2) =0 za z=0 i =z

L
L (2.48)
L

Gornja jednadzba se moze rijesiti separacijom varijabli, odnosno valna funkcija se napise kao

umnozak triju funkcija, pri ¢emu svaka od tih funkcija ovisi samo o jednoj varijabli:

U(z,y,2) = X(2)Y (y)Z(2) (2.49)
gdje svaka pojedinac¢na funkcija zadovoljava rubne uvijete:
X(x)=0 za =0 i =1L
Y(y)=0 za y=0 i y=1L (2.50)
Z(z)=0 za z=0 1 z=1L
Valne funkcije cestice su dane s:
U(z,y,z) = Csin (%x) sin (%y) sin (nzﬁz) (2.51)

konstanta C' se moze izracunati iz uvjeta normalizacije valne funkcije, dok su energije cestice:

2,2
I (2.52)

~ omL

(ng—l—n;—i—nf) Ng, Ny, N, =1,2,3,...
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Kvantno stanje Cestice (valna funkcija Cestice i njezina energija) su u potpunosti opisani s

tri kvantna broja ng, n,, n..

2.11 Vodikov atom

Valna funkcija vodikovog atoma dobije se rjesavanjem stacionarne 3-D Schrédingerove jed-

1 e
Admeg T

nadzbe za potencijalnu energiju oblika U(7) = — gdje je r udaljenost izmedu elektrona
i jezgre (protona u slucéaju atoma vodika). Buduéi da vrijedi m(proton) > m/(elektron),
moze se pretpostaviti da pozitivan naboj (proton) ,miruje” u ishodistu koordinatnog sus-
tava, dok je elektron u vezanom stanju u podrucju oko jezgre. Buduéi da potencijalna
energija ovisi samo o udaljenosti elektrona od jezgre r, jednostavnije je Schrodingerovu jed-
nadzbu rjesavati prelaskom na sferne koordinate r, # i ¢. Stacionarna 3-D Schrodingerova

jednadzba u sfernim koordinatama ima oblik:

2 [10 [ ,00 1 0 (. o 1 0%
_% [TGE (’I“ W) + 7"2 sin@% (SIDQ%) + 7"2 51n98_g02] + U(F)¢ - Ew (253)

gdje je ¥ = (r,0,¢). Rjesavanje Schrédingerove jednadzbe za vodikov atom u sfernim
koordinatama svodi se na metodu separacije varijabli, tj. valna funkcija se moze prikazati

kao umnozak tri funkcije od kojih svaka ovisi o samo jednoj od koordinata:

U(r,0,¢) = R(r)O(0)®(p) (2.54)

gdje je:
R(r) - radijalni dio valne funkcije
©(#)- polarni dio valne funkcije

®(p) - azimutalni dio valne funkcije.

Fizikalno dozvoljena rjesenja Schrodingerove jednadzbe tada trebaju zadovoljavati rubne

uvjete:

a) lim R(r) — 0 (jer je elektron lokaliziran u podrucju oko jezgre atoma)
T—00

b) fukcije ©(0) i ®(p) trebaju poprimati konaéne vrijednosti za sve vrijednosti kutova 6
Ly
c) ®(p) je periodiéna funkcija s periodom 27.

Separacijom varijabli dobivaju se tri nezavisne diferencijalne jednadzbe za funkcije R(r),

O(0) 1 D(p):

B2 d { QdR(T)} N {hQZ(l—i— 1) +U(r)| R(r) = ER(r) (2.55)

C2merzdr dr 2mer?
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snlle% lsmed—(zée)] + [l(l +1) - ngée} O(f) =0 (2.56)
d2®(yp) +m2®(p) =0 (2.57)

de?
U rjesenjima diferencijalnih jednadzbi za funkcije R(r), ©(0) i ®(¢) koje zadovoljavaju rubne

uvjete pojavljuju se tri parametra (kvantna broja):

n=1,23,4,... glavni kvantni broj
[=0,1,2,3,...,n—1 orbitalni kvantni broj
m; =0,+1,+2,£3, ..., £l magnetski orbitalni kvantni broj

Prema tome, kvantno stanje elektrona u vodikovom atomu (valna funkcija elektrona) je

odredena s tri kvantna broja n, [, my:

¢n7l7ml (Tv 0, ‘20) = le(?“), ®l7mz (e)q)ml (QO) (258)
a) radijalni dio valne funkcije R, ;(r) = e~ " f(r) gdje je f(r) polinom stupnja n — 1

b) polarni dio valne funkcije ©;,,,(6) — polinomi stupnja [ koji sadrze potencije po sin 6 i

cos 6
¢) azimutalni dio valne funkcije ®@,,,(p) = e~"™%.

Energija vodikovog atoma ovisi samo o glavnom kvantnom broju n i dana je izrazom kao

kod Bohrova modela:
meet 1 13,6eV
E=—— = =—
8y n? n?

(2.59)

Tablica 1: Prvih nekoliko valnih funkcija vodikovog atoma

nil|my Ry.(r) Orm, (0) | Py, ()
10| 0 ja_g@—a’;) 4 -
200 0| (2~ )| L .
21110 \/ﬁaﬂo@_io 2 cosd \/L??
2111 41 D S P 34inf | L etiv
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Prosjecna vrijednost fizicke veli¢ine koja ovisi samo o koordinati » moze se izracunati prema

relaciji:
/ )| Ry (r)?dr (2.60)
0

Vjerojatnost da se elektron nade na udaljenosti a < x < b od jezgre dana je s:

b
w = /er(T)\Rn,l(r)Pdr (2.61)
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3 Metali i poluvodici

3.1 Metali

Kod ¢vrstih tijela atomi su rasporedeni u kristalnu resetku. Elektronska struktura ¢vrstih

tijela moze se predociti na sljedeéi nacin:

— Elektroni na unutarnjim orbitalama atoma ostaju vezani za svoje mati¢ne atome (nji-
hova valna funcija je lokalizirana u podru¢ju mati¢nih atoma) i njihova kvantna stanja

ostaju priblizno jednaka stanjima u izoliranom atomu.

— Valna funkcija valentnih atoma postaje delokalizirana (oni viSe nisu ¢vrsto vezani za
maticne atome), odnosno njihova kvantna stanja se znatno razlikuju od onih u izoli-
ranom atomu. Kvantna stanja valentnih elektrona su rasporedena unutar energijskih
vrpci, unutar kojih se moze smatrati da se energija mijenja kontinuirano. Energijske
vrpce u kojima se mogu nalaziti elektroni razdvojene su zabranjenim zonama, u kojima

nema dozvoljenih energijskih razina.

Najvisa energijska vrpca kod metala u kojoj jos uvijek ima elektrona, vodljiva vrpca, samo
je djelomi¢no popunjena — postoje nepopunjeni energijske razine u koje elektroni mogu pre-

laziti. Zbog toga metali mogu voditi elektricnu struju i na temperaturi apsolutne nule.

Model slobodnih elektrona u metalu (model slobodnog elektronskog plina)

Najjednostavniji opis metala daje model slobodnih elektrona u metalu. Prema tom modelu,
jedan ili vise valentnih elektrona su izdvojeni iz mati¢nog atoma i mogu se slobodno kre-
tati unutar metala. Ti elektroni ne medudjeluju s ionima kristalne resetke niti s ostalim
elektronima. Slobodni elektroni su zadrzani unutar metala potencijalnom barijerom na ru-
bovima metala, koja ih drzi zarobljenima unutar volumena materijala. Pretpostavlja se da
je potencijalna energija slobodnih elektrona nula unutar metala, tj. da imaju samo kineticku
energiju.
Broj vodljivih elektrona N, u nekom uzorku izgradenom od atoma samo jednog elementa
moze se odrediti pomocu relacije:

N, = N,w (3.1)

gdje je N, broj atoma u uzorku, a w valencija atoma danog elementa. Vrijedi:
N, = — (3.2)

Prema modelu slobodnih elektrona u metalu, ponasanje elektrona u metalu moze se predociti
cesticom u 3-D kutiji (ako se volumen metala reprezentira kockom duljine brida L). Energije

takvog elektrona su dane relacijom (2.52). Medutim, kristal metala zauzima makroskopski
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volumen (ovdje je duljina brida kocke L > de Broglieva valna duljina elektrona). Buduéi da
je volumen metala (3-D kutije) makroskopskih dimenzija, a broj elektrona u kutiji velik (reda
veli¢ine broja atoma u materijalu), postoji ogroman broj kvantnih stanja i energijskih razina
u takvom sistemu, pri cemu su susjedne energijske razine veoma bliskih energija. Radi toga
se energijske razine viSe ne mogu razmatrati kao razdvojene razine, ve¢ se energije elektrona
razmatraju kao da energijske razine ¢ine kontinuiranu raspodjelu energija.

Definira se gustoca stanja g(F) — broj kvantnih stanja dn unutar infinitezimalnog energijskog
intervala dE oko energije E (odnosno broj kvantnih stanja izmedu energija F i E + dFE)

podijeljen s jedini¢nim intervalom energije:

9 3
. dn . 8\/_m27TV\/E

g(E) = = (33)

gdje je m = 9,11 - 107! kg masa elektrona, V volumen uzorka, a h = 6,626 - 1073* J s
Planckova konstanta.

Raspodjela elektrona po razli¢itim kvantnim stanjima pri odredenoj temperaturi 7" dana
je s Fermi-Diracovom funkcijom raspodjele. Vjerojatnost da je kvantno stanje energije £

zaposjednuto pri temperaturi 7"

1
[(B) = ——F%% (3.4)
14+ e 5
gdje je Ep Fermijeva energija, a k = 1,38 - 1072 J K~! Boltzmannova konstanta. Fermijeva
energija Ep predstavlja jedan od termodinamickih parametara sistema (kemijski potencijal).
Opéenito Er = Ep(T, N) gdje je N ukupni broj ¢estica u sistemu.

Fermijeva energija se mijenja s temperaturom prema relaciji:

1+7r2 ET \*
12 \ Epg

gdje je Fpy Fermijeva energija na temperaturi apsolutne nule. Medutim, za temperaturni

interval od T" = 0K do nekoliko stotina kelvina moze se uzeti da vrijedi Er ~ FEgy (tj.
u Sirokom temperaturnom intervalu moze se uzeti da Er ne ovisi o temperaturi i da ima
vrijednost kao na temperaturi 7' = 0 K).

Fermi-Diracova funkcija raspodjele na T'= 0 K ima vrijednost:

F(B) = (3.6)

1 EF< Er

Na temperaturi 7' = 0K sva stanja s energijom manjom od Er su popunjena, dok su sva

stanja s energijom ve¢om od FEr prazna. Racuna se broj elektrona dN. koji zauzimaju
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energijske razine unutar intervala energija £/ i F + dE:
dN, = f(E)dn (3.7)

gdje je f(F) vjerojatnost da je energijska razina F popunjena, a dn broj kvantnih stanja

unutar intervala energija £ i E + dE. Vrijedi:
dn =g(E)dE (3.8)
gdje je g(E) gustoca stanja pa slijedi:
AN, = f(E)g(E)dE (3.9)

Koristeci vrijednost Fermi-Diracove funkcije raspodjele na temperaturi 7' = 0 K dobiva se:

2

1 3 h? h?

Ep = - (§> Zn =0,121—n3 (3.10)
8\7/) m m

gdje je n koncentracija slobodnih elektrona, a m masa elektrona. Ukupna energija elektrona

koji zauzimaju energijske razine unutar intervala energija £'i F + dE:
EdN, = Ef(E)g(E)dE (3.11)

pa je ukupna energija svih elektrona u sistemu:
g = / BdN, = / Ef(E)g(E)dE (3.12)
0

Na temperaturi 7' = 0 K ukupna energija svih elektrona iznosi Fi., = %NeEF.
Prosje¢na energija po elektronu na temperaturi 7 = 0K iznosi F = %EF

Definiraju se velicine:

— Fermijeva brzina vg - brzina koji bi imao klasi¢ni elektron cija je kineticka energija
jednaka Fermijevoj energiji:
mug

Er = 5

(3.13)

— Fermijeva temperatura Tr - temperatura na kojoj klasi¢ni elektron ima termicku ener-
giju jednaku Fermijevoj energiji:
Ex = kTF (3.14)
Izlazni rad i izlaz elektrona iz metala

Izlazni rad W, je najmanji iznos energije koji treba dati elektronima na temperaturi apsolutne
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nule da bi mogli napustiti metal. Vrijedi:
Wi— By — By (3.15)

gdje je E potencijalna barijera, a Er Fermijeva energija.
Schottkyev efekt je pojava snizavanja potencijalne barijere metala kada je povrsina metala
izloZzena ubrzavajuc¢em vanjskom elektricnom polju. U tom slu¢aju izlazni rad se smanjuje

7a 1ZNnos:
eF

AW, =
c 47'('60

(3.16)

gdje je E jakost vanjskog elektriénog polja, a e = 1,6 - 1071 C naboj elektrona.
Zagrijavanjem metala iz njega izlaze elektroni i ta se pojava naziva termionska emisija.

Gustoca struje termionske emisije J dana je s:
J = AT (3.17)

gdje je A konstanta koja ovisi o materijalu, W; izlazni rad, a T temperatura. Ako se uz
zagrijavanje povrsina metala izlozi djelovanju ubrzavajuceg vanjskog elektri¢nog polja jakosti
E, struja se poveca na:

0,44VE
T

J =Je (3.18)

gdje je J gustoca struje bez prikljuc¢enog vanjskog polja.

Elektricna vodljivost metala

Ako se na metalni vodic¢ prikljuci elektricno polje E , njime potece gustoca struje J dana s:

—

J=0-E (3.19)
gdje je o vodljivost materijala. Vrijedi:
1
p=— (3.20)
o

gdje je p otpornost materijala. Na slobodne elektrone unutar metala u vanjskom elektricnom
polju E djeluje sila F = —eﬁ, odnosno elektron dobiva akceleraciju @ = —= ) (ﬁ = ma).
Medutim, vodljivi elektroni unutar metala dozivljavaju sudare (rasprsuju se na vibrirajuéim
atomima u kristalu i necistoéama unutar kristala), odnosno elektron se zbog djelovanja
vanjskog polja ubrzava samo u kratkim vremenskim intervalima, nakon cega zbog sudara

gubi brzinu. Uzimaju se sljedece pretpostavke:

e Elektron se ubrzava (u prosjeku) samo za vrijeme 7 — prosjecno vrijeme izmedu sudara.
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e Zbog rasprsenja elektrona — elektron u vanjskom polju dobije neku prosjecnu brzinu u

smjeru suprotnom od polja, driftnu brzinu v3:

Gi=dr=-—"F (3.21)
m
Za gustocu struje vrijedi:
J = —envy (3.22)
pa je:
2
o="T (3.23)
m

gdje je e naboj elektrona, n koncentracija slobodnih elektrona u metalu, 7 prosje¢no vrijeme

izmedu sudara elektrona, a m masa elektrona. Definira se pokretljivost elektrona u metalu

1 kao:
et
pa je:
o =nep (3.25)

Prema tome, driftna brzina vq je brzina usmjerenog gibanja elektrona pod utjecajem vanjskog
elektricnog polja E (odnosno dodatna brzina koja se superponira na nasumic¢no gibanje

elektrona unutar metala zbog djelovanja vanjskog elektri¢nog polja) i vrijedi:

E

3.2 Poluvodici

Za razliku od metala, kod poluvodica na temperaturi apsolutne nule vrpca najvece energije
koja je potpuno ispunjena elektronima (valentna vrpca) ujedno je i vrpca najvece energije
koja sadrzi elektrone. Sljedeca energijska vrpca (vodljiva vrpeca) na temperaturi 7 = 0K ne
sadrzi niti jedan elektron. Vodljiva i valentna vrpca razdvojene su tzv. zabranjenom vrpcom.
Zato poluvodic¢i ne vode struju na temperaturi apsolutne nule. Povecanjem temperature,
valentni elektroni, koji stvaraju vezu izmedu susjednih atoma u poluvodicu, mogu apsorbirati
dovoljno energije zbog termalnih vibracija atoma u resetci, ¢ime mogu napustiti svoje mjesto
u kristalu i postati slobodni elektroni u materijalu. Odnosno, pove¢anjem temperature,
elektron iz valentne vrpce moze apsorbirati termalnu energiju i prije¢i u vodljivu vrpcu.
Prelaskom elektrona u vodljivu vrpcu, u valentnoj vrpci ostaje prazno kvantno stanje, koje
se pri prikljucenju poluvodi¢a na vanjski napon efektivno ponasa kao pozitivan naboj i to
mjesto se naziva Supljina. Prema tome, u poluvodi¢ima postoje dvije vrste nosioca naboja —

elektroni i Supljine. Tipi¢ni poluvodiéi su elementi iz IV. grupe periodnog sustava elemenata:
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silicij 1 germanij.

Razlikuju se dvije vrste poluvodica:

e Intrinzic¢ni poluvodic¢i — sastoje se od atoma samo jednog elementa i kod njih je kon-

centracija elektrona u vodljivoj vrpci jednaka koncentraciji Supljina u valentnoj vrpci.

e Ekstrinzicni poluvodic¢i — materijalu koji ¢ini poluvodi¢ dodaju se primjese kako bi se
povecala koncentracija nosioca naboja u poluvodi¢u. Ako se dodaju donorske primjese
(kao 8to su N, P ili As u kristalu silicija), u poluvodicu ¢e veéinski nosioci naboja biti
elektroni i takvi poluvodici se zovu N-tipovi poluvodica. Ako se u poluvodicki materijal
dodaju akceptorske primjese (kao sto su B, Alili Ga u kristalu silicija), ve¢inski nosioci

u poluvodicu ¢e biti Supljine i takvi se materijali nazivaju P-tipovi poluvodica.

Zakon termodinamicke ravnoteze u poluvodicu zapisuje se kao:
n = nopo (3.27)

gdje je n; intrinzi¢na koncentracija nosioca naboja, ny ravnotezna koncentracija elektrona u
vodljivoj vrpci, a pg ravnotezna koncentracija sSupljina u valentnoj vrpci.

Intrinzi¢na koncentracija nosioca naboja u poluvodi¢u moze se izracunati pomocu relacije:
2 3 28
n. = CT e *T (3.28)

gdje je C konstanta koja ovisi o materijalu, 7" apsolutna temperatura, F, Sirina zabranjene
vrpee, a k = 1,38 - 1072 J K~! Boltzmannova konstanta.

Relacije (3.27) i (3.28) vrijede opéenito i za intrinzicne i za ekstrinziéne poluvodice.

Kod intrinziénih poluvodi¢a, nosioci naboja (elektroni u vodljivoj i Supljine u valentnoj
vrpci), mogu nastati jedino termickim pobudenjem elektrona iz valentne u vodljivu vrpcu.

Stoga za intrinzicni poluvodi¢ vrijedi:

S druge strane, ekstrinziéni poluvodici sadrze donorske i/ili akceptorske primjese te kod njih
prevladava jedan tip nosioca naboja. Donorski i akceptorski atomi se ioniziraju u materijalu:
donorski atomi postaju pozitivni ioni, buduéi da predaju elektron materijalu, a akceptorski
atomi postaju negativni ioni, budu¢i da primaju elektron iz materijala. S obzirom na to da

poluvodic¢ kao cjelina treba biti elektricki neutralan, za ekstrinzi¢ne poluvodice vrijedi:

no + Na = po + Np (3.30)
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gdje je Na kocentracija akceptorskih primjesa, a Np koncentracija donorskih primjesa.

Opcenito, ravnotezna koncentracija elektrona u vodljivoj vrpci se racuna kao:

Eg—Ep

ng = Nce™ T (3.31)

gdje je N¢ efektivna gustoca kvantnih stanja u vodljivoj vrpci, E¢ energija dna vodljive

vrpce, a Fp Fermijeva energija u poluvodicu. Efektivna gusto¢a kvantnih stanja u vodljivo]

2mm kT ?
Ne =2 <M> (3.32)

vrpci se racuna kao:

12
gdje je m} efektivna masa elektrona.

S druge strane, ravnotezna koncentracija Supljina u valentnoj vrpci se rac¢una kao:

Ep—Ey

po = Nye &7 (3.33)

gdje je Ny efektivna gustoc¢a kvantnih stanja u valentnoj vrpci, Fr Fermijeva energija u
poluvodicu, a Ey energija vrha valentne vrpce.

Efektivna gustoca kvantnih stanja u valentnoj vrpci se racuna kao:

3
2mmi kT ?
Ny =2 (%) (3.34)

gdje je m; efektivna masa Supljina. Ako se za nultu razinu energije stavi vrh valentne vrpce,
tj. uzme By = 0, tada (uz Ec — Ev = E,) relacije (3.31) i (3.33) postaju:

Ep—FEg

ng = Nce #T (3.35)
—Ep
po = Nye*T (3.36)

Za intrinzicni poluvodi¢ vrijedi ny = po pa ako se izjednace relacije (3.31) i (3.33) moze se

odrediti polozaj Fermijevog nivoa u poluvodicu:

1 3 mg
Fp=Fy+ -E, — ~kT1 : 3.37
PER T (m:) 337
Za m; ~ my slijedi:
1
Ep = Ey + §Eg (3.38)

odnosno Fermijev nivo lezi u sredini zabranjenog pojasa (za instrinziéni Sii Ge: m/; je nesto
malo veéi od m;f i Er je malo pomaknut prema valentnoj vrpci).

Kod ekstrinzi¢nih poluvodica slobodni nosioci naboja nastaju na dva nacina: ionizacijom
dopanata i termalnim pobudivanjem elektrona iz valentne vrpce u vodljivu vrpcu. Na sobnoj

temperaturi su svi dopanti ionizirani: donorski atomi predaju elektrone u vodljivu vrpcu, a
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akceptorski atomi primaju elektrone (nastaju Supljine u valentnoj vrpci).
a) Za N-tip poluvodica (uz Ny=0) vrijedi:

— na sobnoj temperaturi i temperaturama manjim od sobne (7" < 300K) vrijedi

TL-2
no ~ Np, po = =~ (1o > po)

no
. Ep—Eg |, ce g
— iz ng = Nce  *#7  imng~ Np slijedi

N,
Ep = Ec — kT'ln (—C> (3.39)
Np

kod N-tipa poluvodica je Fermijev nivo pomaknut prema vodljivoj vrpci
b) Za P-tip poluvodica (uz Np=0) vrijedi:

— na sobnoj temperaturi i temperaturama manjim od sobne (7" < 300K) vrijedi

2
po = Na, ng == (no < po)

. Ep—Ey ce g
— iz po = Nye~ —*# 1 pg~ Ny slijedi

N
Er = By + kT'In (—V) (3.40)
Na

kod P-tipa poluvodica je Fermijev nivo pomaknut prema valentnoj vrpci.
Ukupna gustoca struje u poluvodicu je dana zbrojem gustoca struja elektrona i Supljina:
J = nee(va)e + poe(va)n (3.41)
gdje je e elementarni naboj, (vq). driftna struja elektrona, a (vq),, driftna struja Supljina.

Vrijedi:
(Ud)e - MEE (342)

(va)n = pn B (3.43)

gdje je p. pokretljivost elektrona u vodljivoj vrpci, p, pokretljivost Supljina u valentnoj
vrpci, a E jakost vanjskog elektri¢nog polja.

Kako je J = o F, za vodljivost poluvodica vrijedi:
0 = Noelle + Doellp (3.44)
Sli¢no kao i za metale, otpornost poluvodica p se racuna prema relaciji:

1
p=— (3.45)
o
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3.3 Poluvodicka dioda

Poluvodicka dioda je elektronicki element koji se sastoji od P-tipa i N-tipa poluvodica u
elektricnom kontaktu. Dioda ima raznoliku primjenu u elektronickim spojevima, gdje se
moze koristiti kao sklopka, element za ispravljanje napona, optoelektronicki element itd.
Razlikuje se propusna i nepropusna polarizacija poluvodicke diode u strujnim krugovima.
Ako se dioda spoji na izvor istosmjernog napona na nacin da je P strana diode na visem
potencijalu od N strane, u vodenju struje sudjeluju veéinski nosioci naboja (Supljine na P
strani i elektroni na N strani) te diodom prolazi struja. Ovakav tip polarizacije naziva se
propusnom polarizacijom diode. S druge strane, ako je N strana diode na visem potencijalu
od P strane, kroz diodu prolazi samo struja malog iznosa, koja potje¢e od manjinskih nosioca
naboja (elektrona u P-tipu i Supljina u N-tipu poluvodi¢a). U ovom se slucaju kaze da je
dioda nepropusno polarizirana te se struja kroz diodu tada najéesée moze zanemariti (za Ge
diode je struja nepropusne polarizacije reda velic¢ine pA, a za Si diode nA). Ako se diodu
spoji na vanjski izvor istosmjernog napona U, struja kroz diodu moze se racunati prema
relaciji:

I=1Ig (e Ur 1) (3.46)
gdje je Is struja manjinskih nosioca naboja, a:

kT
Up ="~ (3.47)

e

Predznak napona U uzima se na sljedeci nacin:

— za propusno polarizirani PN spoj U > 0

— za nepropusno polarizirani PN spoj U < 0

Propusna polarizacija poluvodicke diode:
Za temperaturu 7' = 300K vrijedi da je % = 25,875mV. Tada je U > %T za napone
U>01Vi et > 1 pa se moze pisati:

I = IgeFr (3.48)

odnosno struja pokazuje eksponencijalnu ovisnost o priklju¢enom naponu.

Nepropusna polarizacija poluvodicke diode:
Bududi da je U < 0 na temperaturama bliskim sobnoj (7" = 300 K, %T = 25,875mV) vrijedi

et < 1 pa je I = —Ig (kroz diodu prolazi samo struja manjinskih nosioca naboja).
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Struja manjinskih nosioca naboja se moze izracunati prema relaciji:

D D ) (3.49)

Is = Sen? (NDLh + NiL.
gdje je:
S - povrsina presjeka PN spoja
n; - intrinziéna koncentracija nosioca naboja
Dy, - difuzijska konstanta Supljina
D, - difuzijska konstanta elektrona
Np - koncentracija donorskih primjesa na N-strani
Ny - koncentracija akceptorskih primjesa na P-strani
Ly, - difuzijska duljina supljina

L. - difuzijska duljina elektrona.

Za difuzijske duljine vrijede relacije:
Lh =V DhTh (350)
L. =+/D.t, (3.51)

gdje 7 oznacava vrijeme zivota manjinskih nosioca naboja: 7. vrijeme zZivota elektrona na
P-strani, a 7, vrijeme Zivota Supljina na N-strani. Difuzijske konstante elektrona i supljina

se racunaju pomocu relacija:

kT
kT
De = /,Le7 (353)

gdje je pp pokretljivost Supljina u valentnoj vrpci, a p. pokretljivost elektrona u vodljivoj

vrpci.

3.4 Hallov ucinak

Razmatra se pravokutna plocica poluvodica ili metala kroz koju prolazi struja i na koju
djeluje vanjsko magnetsko polje B orijentirano okomito na ravninu uzorka. U tom slucaju
na nosioce naboja ¢ djeluje Lorentzova sila zbog koje dolazi do nakupljanja nosioca naboja uz
rub poluvodica. Posljedica toga je uspostavljanje elektrostatskog polja E_H) i Hallova napona
Un kao razlike potencijala izmedu nasuprotnih rubova ploc¢ice. Polaritet Hallova napona

ovisi o predznaku nosioca naboja. U ravnotezi je rezultanta Lorentzove sile i elektrostatske
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sile koja djeluje na nosioce naboja zbog uspostave elektri¢nog polja Z?I{) jednaka nuli:
— —
L+ F =0 (3.54)
qoa X B+ qBEp = 0 (3.55)
gdje je vq driftna brzina nosioca naboja. Gustoéa struje dana je s:
7 = nqvg (3.56)
gdje je n koncentracija nosioca naboja pa vrijedi:
- 1

— —
En=-—JxB (3.57)
ng

Hallova konstanta Ry definira se kao:

1
Ry = — 3.58
h= o (359)
Ako se Hallov napon uvede kao:
U,
By = TH (3.59)

gdje je h sirina plocice te izrazi gustoca struje pomocu struje I i debljine plocice d:

I

J=— 3.60
dobiva se: BR
Uy = — dHI (3.61)

Hallov napon Uy, struja I i magnetsko polje B su velicine koje se mjere izravno u eksperi-
mentu, $to omogucava da se iz relacije (3.61) odredi Hallova konstanta Ry, a time i predznak
i koncentracija nosioca naboja. Hallova konstanta se moze izraziti pomocu pokretljivosti no-

sioca naboja u i provodnosti materijala o. 1z relacija:

J=0E (3.62)

Ug = pE (3.63)
slijedi:

o = puRy (3.64)

pri ¢emu je elektri¢no polje E polje koje stvara struju I kroz ploc¢icu, a ne Hallovo elektri¢no

polje.
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