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1.1 Molekulski sastav tvari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Rutherfordov eksperiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Bohrov model vodikovog atoma . . . . . . . . . . . . . . . . . . . . . . . . . 4
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2.9 Schrödingerova jednadžba u 3-D . . . . . . . . . . . . . . . . . . . . . . . . . 24
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3.1 Metali . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
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Struktura atoma i fotonska priroda elektromagnetskog zračenja

1 Struktura atoma i fotonska priroda

elektromagnetskog zračenja

1.1 Molekulski sastav tvari

Mase atoma i molekula se najčešće izražavaju u atomskim jedinicama mase. Atomska jedi-

nica mase (u) definira se kao 1/12 mase atoma izotopa ugljika 12C, te vrijedi u = 1,66057

·10−27 kg.

Mogu se definirati sljedeće veličine:

Relativna atomska masa Ar:

Ar =
ma

u
(1.1)

gdje je ma masa atoma.

Relativna molekulska masa Mr:

Mr =
mM

u
(1.2)

gdje je mM masa molekule.

Zbog postojanja izotopa, atoma istog elementa (istog atomskog broja Z), ali različite mase

(različitog masenog broja A), relativna atomska masa pojedinog elementa dobiva se uzi-

majući u obzir relativne udjele pojedinih izotopa u prirodi. Na primjer, klor posjeduje dva

izotopa: 35Cl (zastupljenost u prirodi 75,4 %) i 37Cl (zastupljenost u prirodi 24,6 %). Stoga

je relativna atomska masa klora dana s:

Ar(Cl) = 0,754 Ar(
35Cl) + 0,246 Ar(

37Cl) = 35,457 (1.3)

Količina tvari se izražava u jedinici mol, pri čemu 1 mol tvari sadrži točno odreden broj

čestica (atoma, molekula) te tvari. Po definiciji, mol je količina tvari sustava koji sadrži to-

liko čestica (atoma, molekula, elektrona...) koliko ima atoma u 12 g ugljika 12C. Broj atoma

u 12 g ugljika 12C naziva se Avogadrova konstanta: NA = 6,02214076 · 1023 mol−1 [1].

Prema tome, količina (množina) tvari sustava n dana je s:

n =
N

NA

(1.4)

gdje je N broj čestica u uzorku.
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Struktura atoma i fotonska priroda elektromagnetskog zračenja

Molna masa M se definira kao masa 1 mola neke tvari, odnosno:

M =
m

n
(1.5)

gdje je m masa tvari, a n količina tvari.

Vrijedi:

ma =
M

NA

(1.6)

mM =
M

NA

(1.7)

Takoder, molni volumen Vm se definira kao volumen 1 mola neke tvari, odnosno:

Vm =
V

n
(1.8)

gdje je V volumen uzorka, a n količina tvari sustava. Iz Avogadrova zakona slijedi da količina

tvari 1 mol bilo kojeg plina u istim uvjetima ima jednak volumen koji se naziva molni vo-

lumen plina Vm. Pri normiranim uvjetima (T = 273,15 K, p = 101325 Pa) molni volumen

iznosi Vm = 22,4 · 10−3 m3 mol−1.

Faradayev zakon elektrolize

Elektroliza je proces vodenje električne struje kroz otopine (tekućine). U tipičnom ekspe-

rimentu se u polarnoj tekućini (npr. H2O) otopi elektrolit (npr. NaCl ili neki dugi ionski

kristal), čime nastaje otopina koja sadrži slobodne nosioce naboja – pozitivno nabijene ka-

tione (Na+) i negativno nabijene anione (Cl−). Ako se u takvu otopinu urone dvije metalne

elektrode i priključe se na izvor istosmjernog napona, kroz otopinu će prolaziti električna

struja zbog slobodnih kationa i aniona u otopini. Pri ovakvom procesu će se na elektrodi

priključenoj na pozitivan pol baterije (anodi) taložiti anioni (negativni ioni), dok će se na

elektrodi priključenoj na negativan pol baterije (katodi) taložiti kationi (pozitivni ioni), od-

nosno nakupljat će se materijal na elektrodama.

Faradayevi empirijski zakoni elektrolize:

1. Količina tvari koja se izluči na elektrodi proporcionalna je količini elektriciteta koji je

prošao kroz elektrolit i vremenu:

m = kIt (1.9)

gdje je m masa izlučena na elektrodi, I struja kroz elektrolit, t vrijeme, a k:

k =
M

wq
(1.10)
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Struktura atoma i fotonska priroda elektromagnetskog zračenja

gdje je M molna masa izražena u g mol−1, w valencija, a q = 96500 C mol−1.

2. Jednake količine elektriciteta izlučuju različite tvari u omjeru njihovih atomskih masa:

m1 : m2 · · · =
A1

w1

:
A2

w2

. . . (1.11)

gdje je A maseni broj elementa.

1.2 Rutherfordov eksperiment

U Rutherfordovom eksperimentu se razmatra raspršenje pozitivno nabijenih čestica na tan-

kim metalnim folijama. Čestice koje se raspršuju se nazivaju projektili, a atomi metala

(na kojima se projektili raspršuju) se nazivaju mete. Rutherford je kao projektile koristio

α-čestice (jezgre atoma helija, 4
2He), dok su mete bili atomi zlata, srebra ili bakra. Zbog

puno veće mase atoma metala u odnosu na masu projektila, može se pretpostaviti da pri

medudjelovanju atoma i projektila atom miruje. Takoder, zbog puno veće mase projektila u

odnosu na masu elektrona, može se pretpostaviti da pozitivno nabijeni projektili medudjeluju

samo s pozitivno nabijenom jezgrom u atomu (medudjelovanje projektila s elektronima u

atomu mete se može zanemariti).

Prema tome, općenito u Rutherfordovom eksperimentu pozitivno nabijeni projektili naboja

Z1e upadaju na centar raspršenja naboja Z2e (jezgru atoma mete), pri čemu je Z1 ≪ Z2.

Zbog elektrostatske odbojne sile izmedu projektila i jezgre atoma mete, projektili skreću sa

svoje prvobitne putanje, tj. raspršuju se.

Broj projektila koji se raspršuju unutar odredenog kuta može se izračunati prema relaciji:

dN =
N0nd

2π

(
Z1Z2e

2

8ε0E

)2
sinθ(
sin θ

2

)4dθ (1.12)

gdje je:

dN - broj projektila koji se raspršuju u prostornom kutu izmedu θ i θ + dθ

N0 - broj projektila (po jedinici površine i jedinici vremena) koji upadaju na metu

n - koncentracija atoma mete

d - debljina mete

E - kinetička energija projektila

ε0 - permitivnost vakuuma koja iznosi ε0 = 8,854 · 10−12 C2 N−1 m−2.
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Struktura atoma i fotonska priroda elektromagnetskog zračenja

1.3 Bohrov model vodikovog atoma

Spektar vodikovog atoma

Eksperimenti s užarenim plinovima (gdje se medudjelovanje pojedinih atoma može zanema-

riti) pokazivali su da plinovi zagrijani na odredenu temperaturu emitiraju elektromagnetske

valove (svjetlost) samo odredene valne duljine. Kirchhoff i Bunsen su još sredinom 19 st.

zaključili da svaki element u plinovitom stanju posjeduje karakterističan emisijski linijski

spektar. Takoder, ako se plin na sobnoj temperaturi obasja bijelom svjetlošću (svjetlošću

koja sadrži sve valne duljine vidljivog dijela spektra), može se primijetiti da će atomi plina

apsorbirati samo odredene valne duljine. Odnosno, i emisijski i apsorpcijski spektri plinova

su diskretni, tj. sastoje se od diskretnih linija odredenih valnih duljina. Pritom, emisijski

spektar nekog elementa sadrži sve linije iz apsorpcijskog spektra, ali i neke linije kojih nema

u apsorpcijskom spektru.

Spektralne linije koje se javljaju u spektru plinovitog vodika mogu se izračunati pomoću

empirijske relacije:

ν̄ = R

(
1

m2
− 1

n2

)
(1.13)

gdje je ν̄ valni broj, R Rydbergova konstanta R = 1,097373 · 107 m−1, a m i n prirodni

brojevi, pri čemu je m < n. Valni broj se definira pomoću valne duljine promatrane linije λ:

ν̄ =
1

λ
(1.14)

Mjerna jedinica valnog broja je m−1.

Spektralne linije vodika se mogu grupirati u tzv. serije. Broj m karakterizira pojedinu seriju

spektra vodikovog atoma:

m = 1 Lymanova serija

m = 2 Balmerova serija

m = 3 Pashenova serija

m = 4 Bracketova serija itd.

Bohrovi postulati

1. Elektron se u atomu kreće po kružnoj putanji oko jezgre pod djelovanjem Coulombove

privlačne sile izmedu jezgre i elektrona te se pokorava zakonima klasične mehanike.

2. Za razliku od klasične mehanike, elektron se ne može kretati po proizvoljnoj orbiti

oko jezgre, već samo po točno odredenim (diskretnim) orbitama na kojima ima točno

odredene (diskretne) vrijednosti energije (En). Dozvoljene orbite po kojima se kreće

elektron, odredene su iz uvjeta da iznos orbitalnog angularnog momenta elektrona bude

4
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kvantiziran prema relaciji: ∣∣∣⃗l ∣∣∣ = mvr = n
h

2π
(1.15)

3. Kada se elektron nalazi u pojedinoj orbiti (odnosno kvantnom stanju) on ne zrači

elektromagnetske valove, iako se giba po kružnici i ima centripetalno ubrzanje. Do

emisije elektromagnetskog zračenja dolazi pri prijelazu elektrona izmedu dviju orbita,

pri čemu vrijedi da je energija emitiranog fotona hν jednaka razlici energija tih dviju

orbita:

hν = En − Em (1.16)

Analogno, atom može apsorbirati elektromagnetsko zračenje samo ako je energija

zračenja jednaka razlici energija početnog i završnog stanja.

Prema 1. postulatu, elektrostatska privlačna sila izmedu elektrona i jezgre (tj. protona u

slučaju vodikovog atoma) djeluje kao centripetalna sila koja drži elektron na kružnoj putanji

oko jezgre:

Fe = Fcp (1.17)

1

4πε0

e2

r2
=
mv2

r
(1.18)

Pomoću relacije (1.18) i 2. postulata (relacije 1.15) mogu se izračunati energija i brzina koju

elektron posjeduje u pojedinoj orbiti, kao i polumjer odredene elektronske orbite:

� kinetička energija Kn i potencijalna energija Un elektrona na n-toj orbiti dane su s:

Kn =
mee

4

8ε 2
0h

2

1

n2
(1.19)

Un = − mee
4

4ε 2
0h

2

1

n2
(1.20)

gdje je:

me - masa elektrona me = 9,11 · 10−31 kg

e - naboj elektrona e = 1,602 · 10−19 C

ε0 - permitivnost vakuuma ε0 = 8,854 · 10−12 C2 N−1 m−2

h - Planckova konstanta h = 6,626 · 10−34J s

� energija n-tog stanja:

En = Kn + Un = − mee
4

8ε 2
0h

2
· 1

n2
= (−13,6 eV) · 1

n2
(1.21)

� polumjer n-te orbite:

rn =
h2ε0
πmee2

n2 = a0n
2 (1.22)
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gdje je a0 = 0,529 · 10−10 m polumjer orbite osnovnog stanja (Bohrov polumjer)

� brzina elektrona u n-toj orbiti:

vn =
e2

2ε0h

1

n
(1.23)

1.4 Ioni slični vodiku

Bohrova teorija se, osim na vodikov atom, može primjeniti i na ione s jednim elektronom u

elektronskom omotaču (na primjer He+ ili Li2+). Vrijedi:

� energija n-tog stanja:

En = − mee
4

8ε 2
0h

2

Z2

n2
= (−13,6 eV)

Z2

n2
(1.24)

gdje je:

me - masa elektrona me = 9,11 · 10−31 kg

e - naboj elektrona e = 1,602 · 10−19 C

ε0 - permitivnost vakuuma ε0 = 8,854 · 10−12 C2 N−1 m−2

h - Planckova konstanta h = 6,626 · 10−34J s

Z - atomski broj elementa (broj protona u jezgri)

� polumjer n-te orbite:

rn =
h2ε0
πmee2

n2

Z
= a0

n2

Z
(1.25)

gdje je a0 = 0,529 · 10−10 m polumjer orbite osnovnog stanja (Bohrov polumjer).

Spektralne linije iona sličnih vodiku se mogu izračunati pomoću relacije:

ν̄ = RZ2

(
1

m2
− 1

n2

)
(1.26)

gdje je ν̄ valni broj, R Rydbergova konstanta, m kvantni broj početnog stanja, a n kvantni

broj konačnog stanja.

Koristeći relacije (1.16) i (1.21) može se dobiti Rydbergova empirijska formula (1.13) za valne

duljine koje se javljaju u spektru plina vodika.

1.5 Rendgensko zračenje

Rendgenska cijev se sastoji od dviju elektroda (anode i katode), smještene u vakuumsku cijev.

Zagrijavanjem katode dolazi do emisije elektrona iz katode te se elektroni ubrzavaju u visokoj

razlici potencijala U (najčešće nekoliko desetaka tisuća volta) prema anodi. Prilikom sudara
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elektrona visoke energije s anodom, dolazi do emisije rendgenskog zračenja s te elektrode.

Spektar rendgenskog zračenja se sastoji od dva dijela:

1. Kontinuirani dio rendgenskog spektra - nastaje jer se elektroni raspršuju na jezgrama

atoma u anodi i usporavaju. Prema klasičnoj elektrodinamici, nabijena čestica koja us-

porava emitira elektromagnetsko zračenje (zakočno zračenje ili Bremsstrahlung). Ener-

gija emitiranog fotona jednaka je razlici početne i konačne energije elektrona. Budući

da elektron može gubiti proizvoljne iznose svoje kinetičke energije, nastaje kontinuiran

spektar. Maksimalna energija zračenja nastaje ako sva kinetička energija elektrona

prijede u elektromagnetsko zračenje:

hνmax = eU (1.27)

2. Diskretni dio rendgenskog spektra – nastaje jer ubrzani elektroni izbijaju elektrone

iz unutrašnjih ljuski atoma anode, te na njihovo mjesto dolaze elektroni iz vǐsih lju-

ski. Kao posljedica tog procesa emitira se kvant energije (foton) koji odgovara razlici

energija pripadnih elektronskih stanja. Prema empirijskom Mosleyevom zakonu linije

diskretnog spektra dane su izrazom:

ν̄ = R(Z − b)2
(

1

m2
− 1

n2

)
(1.28)

gdje jeR Rydbergova konstanta, Z atomski broj elementa od kojeg je gradena anoda,m

glavni kvantni broj početne razine, n glavni kvantni broj konačne razine, a b konstanta

koja karakterizira danu liniju (npr. za Kα liniju b = 1, za Lα b = 7,4).

1.6 Alkalni atomi

Alkalni atomi su jednovalentni atomi, odnosno atomi s jednim valentnim elektronom (na

primjer Li, Na, Cs itd.). Zbog odbojnog elektrostatskog medudjelovanja izmedu valentnog

elektrona i elektrona na unutarnjim orbitalama, može se razmotriti model prema kojem na

valentni elektron ne djeluje cijeli naboj jezgre atoma (Ze), već se energijske razine valentnog

elektrona mogu aproksimirati jednoelektronskim atomom, pri čemu na taj elektron djeluje

pozitivan naboj Zeffe (gdje je Zeff < Z). Ovakva pojava se naziva zasjenjenje jezgre, tj.

valentnom elektronu pozitivno nabijenu jezgru
”
zasjenjuju“ elektroni na unutarnjim orbita-

lama. Iznos Zeff ovisi o orbitali na kojoj se nalazi valentni elektron, tj. Zeff = Zeff(n, l).

Energijske razine valentnog elektrona alkalnog atoma mogu se aproksimirati izrazom:

E(n, l) = − Rhc

[n−∆(n, l)]2
(1.29)

7
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gdje je R Rydbergova konstanta za dani element, h Planckova konstanta, c brzina svjetlosti,

n glavni kvantni broj stanja, a ∆(n, l) kvantni defekt koji osim o n ovisi i o orbitalnom kvant-

nom broju l. Za prijelaz elektrona s jedne energijske razine na drugu mora biti zadovoljen

uvjet ∆l = ±1.

1.7 Struktura atoma

Stanje elektrona u atomu karakterizirano je s četiri kvantna broja:

– Glavni kvantni broj n – odreduje ljusku u kojoj se nalazi elektron. Ljuske koje pripa-

daju kvantnim brojevima n = 1, 2, 3, 4, ... označavaju se redom slovima K, L, M, N,

...

– Orbitalni kvantni broj l – odreduje podljusku u kojoj se nalazi elektron. Za dani

glavni kvantni broj n, l može poprimiti vrijednosti 0, 1, 2, 3, ..., n− 1. Podljuske koje

pripadaju kvantnim brojevima l = 0, 1, 2, 3, ... označavaju se redom slovima s, p, d,

f , ...

– Magnetski orbitalni kvantni broj ml – za dani orbitalni kvantni broj l, ml može popri-

miti vrijednosti −l,−l + 1,−l + 2, ..., l − 2, l − 1, l.

– Magnetski spinski kvantni broj ms može poprimiti vrijednosti ±1
2
.

Općenito, u vǐseelektronskim atomima, energija elektrona ovisi o kvantnim brojevima n i

l, odnosno o ljusci i podljusci u kojoj se nalazi elektron. Pri prijelazu elektrona iz jednog

kvantnog stanja u drugo moraju biti zadovoljeni uvjeti ∆l = ±1, ∆ml = 0,±1. Bez prisustva

vanjskog magnetskog polja kvantni brojevi ml i ms ne utječu na energiju elektrona.

Elektron u atomu posjeduje dva angularna momenta:

1. Orbitalni angularni moment l⃗ - posljedica orbitalnog gibanja elektrona u području oko

jezgre atoma: ∣∣∣⃗l ∣∣∣ = h̄
√
l(l + 1) (1.30)

gdje je h̄ reducirana Planckova konstanta
(
h̄ = h

2π

)
. Projekcija obitalnog angularnog

momenta na os z može poprimiti vrijednosti lz = h̄ml.

2. Spinski angularni moment s⃗ - vlastiti (intrinzični) angularni moment elektrona:

|s⃗ | = h̄
√
s(s+ 1) (1.31)

Elektron je čestica spina s = 1
2
pa spinski angularni moment elektrona ima vrijednost

h̄
√

3
4
. Projekcija spinskog angularnog momenta na os z može poprimiti vrijednosti

sz = h̄ms = ±1
2
h̄.
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Ukupni angularni moment j⃗ definira se kao j⃗ = l⃗ + s⃗ te ima vrijednost:∣∣∣⃗j ∣∣∣ = h̄
√
j(j + 1) (1.32)

pri čemu kvantni broj j može poprimiti vrijednosti j = |l − s|, |l − s|+1, . . . , l+s. Projekcija

ukupnog angularnog momenta j⃗ na os z ima vrijednosti jz = h̄mj pri čemu mj poprima

vrijednosti mj = −j,−j + 1, . . . , j − 1, j za dani j. S elektronom se povezuju magnetski

dipolni momenti:

– magnetski orbitalni dipolni moment:

µ⃗l = − e

2m
l⃗ (1.33)

te vrijedi:

|µ⃗l| =
e

2m
h̄
√
l(l + 1) (1.34)

|µ⃗l| = µB

√
l(l + 1) (1.35)

gdje je µB Bohrov magneton:

µB =
eh̄

2m
(1.36)

i iznosi µB = 9,274 · 10−24 J T−1 = 5,788 · 10−5 eV T−1

– magnetski spinski dipolni moment:

µ⃗s = − e

m
s⃗ (1.37)

te vrijedi:

|µ⃗s| = 2µB

√
s(s+ 1) (1.38)

– ukupni magnetski dipolni moment µ⃗j:

|µ⃗j| = µBg
√
j(j + 1) (1.39)

gdje je g Landeov faktor definiran kao:

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(1.40)

1.8 Vǐseelektronski sustavi

Razmatra se vǐseelektronski atom (atom s n elektrona). Definira se:

9
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– L − ukupni orbitalni kvantni broj atoma (stanja koja pripadaju kvantnim brojevima

L = 0, 1, 2, 3, . . . označavaju se velikim slovima S, P, D, F,...)

– S − ukupni spin atoma.

Ukupni orbitalni angularni moment atoma:∣∣∣L⃗ ∣∣∣ = h̄
√
L(L+ 1) (1.41)

Ukupni spinski angularni moment atoma:∣∣∣S⃗ ∣∣∣ = h̄
√
S(S + 1) (1.42)

Ukupni angularni moment atoma: ∣∣∣J⃗ ∣∣∣ = h̄
√
J(J + 1) (1.43)

gdje u slučaju LS interakcije vrijedi J = |L− S|, |L− S|+1, . . . , L+S. Projekcija ukupnog

angularnog momenta J⃗ na os z ima vrijednosti Jz = h̄Mj pri čemu Mj poprima vrijednosti

Mj = −J,−J + 1, . . . , J − 1, J za dani J . Kvantno stanje atoma označava se kao 2S+1LJ .

Magnetski dipolni momenti atoma:

– magnetski orbitalni dipolni moment:

µ⃗L = − e

2m
L⃗ (1.44)

te vrijedi:

|µ⃗L| =
e

2m
h̄
√
L(L+ 1) (1.45)

|µ⃗L| = µB

√
L(L+ 1) (1.46)

gdje je µB Bohrov magneton:

µB =
eh̄

2m
(1.47)

i iznosi µB = 9,274 · 10−24 J T−1 = 5,788 · 10−5 eV T−1

– magnetski spinski dipolni moment:

µ⃗S = − e

m
S⃗ (1.48)

te vrijedi:

|µ⃗S| = 2µB

√
S(S + 1) (1.49)
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– ukupni magnetski dipolni moment µ⃗J :

|µ⃗J | = µBg
√
J(J + 1) (1.50)

gdje je g Landeov faktor definiran kao:

g = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(1.51)

Projekcija ukupnog magnetskog momenta na os z dana je s (µj)z = gµBMJ .

1.9 Zeemanov efekt

Zeemanov efekt je pojava cijepanja energijskih razina atoma (a time i spektralnih linija

atoma) u vanjskom magnetskom polju B⃗. Do njega dolazi jer elektron posjeduje magnetski

moment µ⃗ koji interagira s vanjskim magnetskim poljem. Općenito, u vanjskom magnetskom

polju će na česticu koja posjeduje magnetski moment djelovati moment sile τ⃗ = µ⃗× B⃗, koji

nastoji zakrenuti smjer dipolnog momenta u pravcu vanjskog polja. Takoder, svaka čestica

koja posjeduje magnetski dipolni moment µ⃗ u vanjskom magnetskom polju B⃗ dobiva do-

datnu energiju U = −µ⃗ · B⃗.

Normalni Zeemanov efekt – promatra se medudjelovanje magnetskog polja samo s orbitalnim

magnetskim momentom atoma (spin se zanemaruje). Ako uzmemo da je vanjsko magnet-

sko polje usmjereno duž osi z tada će se kod jednoelektronskih sistema (atoma s jednim

elektronom i alkalnih atoma) energija elektrona promijeniti za iznos:

U = µBmlB (1.52)

gdje je µB Bohrov magneton, B magnetsko polje, a ml magnetski orbitalni kvantni broj

elektrona. Kod anomalnog Zeemanovog efekta razmatra se ukupni magnetski dipolni mo-

ment elektrona (orbitalni i spinski magnetski dipolni moment) te je cijepanje energijske linije

elektrona u magnetskom polju B⃗ tada dano s:

U = gµBmjB (1.53)

gdje je g Landeov faktor, µB Bohrov magneton, B magnetsko polje, a mj poprima vrijednost

mj = j,−j + 1, . . . , j − 1, j za dani j. U vanjskom magnetskom polju B⃗, totalni angularni

moment J⃗ precesira oko smjera magnetskog polja kružnom frekvencijom:

ω =
gµBB

h̄
(1.54)
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Pri prijelazima atoma iz jednog stanja u drugo trebaju biti zadovoljena sljedeća pravila za

promjenu kvantnih brojeva: ∆J = 0,±1 (osim za prijelaze J = 0 u J = 0), ∆Mj = 0,±1,

∆S = 0, ∆L = 0,±1. Za jednoelektronske sisteme prijelazna pravila su: ∆j = 0,±1 (osim

za prijelaze j = 0 u j = 0), ∆mj = 0,±1, ∆l = ±1.

1.10 Fotoelektrični učinak

Fotoelektrični učinak (fotoelektrični efekt) je pojava emisije elektrona iz metala pod djelo-

vanjem elektromagnetskog (EM) zračenja. Najjednostavniji oblik eksperimenta povezan s

fotoelektričnim učinkom može se izvesti u fotocijevi, vakuumskoj cijevi koja se sastoji od

dviju elektroda – katode i anode. Kada se katoda izloži EM zračenju odredene frekvencije,

EM zračenje uzrokuje emisiju elektrona s katode. Ako se na katodu i anodu priključi razlika

potencijala UAC elektroni bivaju privučeni pozitivnijim potencijalom na anodi i strujnim

krugom prolazi struja.

Eksperimentalni rezultati su pokazali sljedeće:

– Do fotoemisije elektrona s katode dolazi samo ako je frekvencija EM zračenja ν veća

od neke granične vrijednosti νg. Pritom, granična frekvencija ovisi o metalu od kojeg

je načinjena katoda. Za većinu metala νg je u ultraljubičastom području.

– Neki elektroni se s katode emitiraju s velikim početnim brzinama (kinetičkim energi-

jama). Naime, ako se anoda priključi na niži potencijal u odnosu na katodu, opaža se

smanjenje fotostruje, a za UAC = −Uz struja fotoelektrona se smanjuje na nulu gdje

je Uz zaustavni napon. Prema tome, za UAC = −Uz zaustavljaju se fotoelektroni s

najvećom kinetičkom energijom Kmaks, odnosno vrijedi eUz = Kmaks.

– Zaustavni napon Uz ne ovisi o intenzitetu svjetlosti, dok vrijednost zaustavnog na-

pona (a time i najveća kinetička energija fotoelektrona) raste linearno s povećanjem

frekvencije EM zračenja.

Navedeni eksperimentalni rezultati se nisu mogli objasniti s valnom teorijom EM zračenja,

već je za objašnjenje fotoelektričnog učinka bio potreban novi model kojim će se opisati prije-

nos energije izmedu EM zračenja i materije. Albert Einstein je 1905. godine dao objašnjenje

fotoelektričnog učinka na temelju pretpostavke da je energija EM zračenja koncentrirana u

lokaliziranim paketima (kvantima). Pri tome je energija kvanta EM zračenja (fotona) jed-

naka hν gdje je h Planckova konstanta, a ν frekvencija EM zračenja.

Prema Einsteinu, fotoelektrični učinak je medudjelovanje elektrona s jednim fotonom:

– ako je hν > Wi – foton se apsorbira od strane elektrona (elektron se emitira s površine

metala)
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– ako je hν < Wi – foton se neće apsorbirati od strane elektrona (elektron se ne emitira

s površine metala)

gdje jeWi izlazni rad za dani metal, odnosno energija koju treba predati metalu na apsolutnoj

nuli da bi slobodni elektroni najveće energije mogli svladati privlačne sile koje ih vezuju za

metal i emitirati se s njegove površine.

Najmanja energija potrebna da se emitira elektron je za ν = νg, te vrijedi hνg = Wi. Za

ν > νg energija fotona se utroši na izlazni rad i kinetičku energiju fotoelektrona:

Ef = Wi +Kmaks (1.55)

gdje je Ef energija fotona frekvencije ν (valne duljine λ):

Ef = hν (1.56)

Ef = h
c

λ
(1.57)

a najveća kinetička energija koju mogu dobiti elektroni pri fotoelektričnom učinku Kmaks

može se zapisati kao:

Kmaks =
mv2maks

2
(1.58)

Vrijednost Kmaks se ekperimentalno odreduje mjereći zaustavni napon Uz što je je najmanja

vrijednost napona koju treba priključiti u odnosu na metal da bi se u potpunosti zaustavili

fotoelektroni te vrijedi:

eUz = Kmaks (1.59)

1.11 Comptonovo raspršenje

Comptonovo raspršenje (Comptonov efekt) je pojava raspršenja elektromagnetskog zračenja

malih valnih duljina (rendgenskog zračenja ili gama-zračenja) na slabo vezanim elektronima

u materijalu (slika 1). Eksperimenti Arthura Comptona su 1922. godine pokazali da ako

rendgensko zračenje valne duljine λ upada na materijal, dio raspršenog zračenja ima veću

valnu duljinu od upadnog zračenja odnosno λ′ > λ. Pri tome, valna duljina raspršenog

zračenja λ′ ovisi o kutu raspršenja θ.

Comptonovi eksperimentalni rezultati se nisu mogli objasniti valnom prirodom EM zračenja,

već korǐstenjem fotonskog modela. Prema fotonskom modelu EM zračenja, ova pojava se

razmatra kao sudar dviju čestica (elektrona i fotona) te se koriste zakoni očuvanja energije

i impulsa (prije i poslije sudara):

– zakon očuvanja energije:

Ef + Ee = Ef
′ + Ee

′ (1.60)
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gdje je:

Ef - energija fotona prije sudara
(
Ef =

hc
λ

)
Ee - energija elektrona prije sudara (ako se pretpostavi da elektron prije sudara miruje,

odnosno ima mnogo manju brzinu od fotona, vrijedi Ee = mc2)

Ef
′ - energija fotona nakon sudara

(
Ef

′ = hc
λ′

)
Ee

′ - energija elektrona nakon sudara

– zakon očuvanja količine gibanja:

#”pf +
#”pe =

# ”

pf
′ +

#”

pe
′ (1.61)

gdje je:
#”pf - količina gibanja fotona prije sudara
#”pe - količina gibanja elektrona prije sudara (ako se pretpostavi da elektron prije sudara

miruje, odnosno ima mnogo manju brzinu od fotona, vrijedi pe = 0)
# ”

pf
′ - količina gibanja fotona nakon sudara

#”

pe
′ - količina gibanja elektrona nakon sudara

Slika 1: Comptonovo raspršenje [4]

Pri razmatranju Comptonovog raspršenja trebaju se koristiti relativistički izrazi za impuls i

energiju elektrona. Energija elektrona je dana s relacijom:

Ee = mc2 +K (1.62)

dok je veza izmedu energije i količine gibanja:

E 2
e =

(
mc2

)2
+ (pec)

2 (1.63)
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gdje je K kinetička energija elektrona, m masa mirovanja elektrona, a pe količina gibanja.

Količina gibanja fotona je dana s:

pf =
h

λ
(1.64)

dok je veza izmedu energije i količine gibanja fotona:

Ef = pfc (1.65)

Iz gornjih izraza se može izvesti relacija za promjenu valne duljine EM zračenja pri Comp-

tonovom raspršenju:

∆λ = λ′ − λ =
h

mc
(1− cosθ) (1.66)

gdje je λ valna duljina svjetlosti prije raspršenja, λ′ valna duljina svjetlosti nakon raspršenja,

m masa elektrona, a θ kut raspršenje fotona. Takoder, kut pod kojim se elektron rasprši

nakon medudjelovanja s fotonom (u odnosu na upadni foton) može se izračunati iz relacije:

tanφ =
λλ′ sin θ

λ− λ′ cos θ
(1.67)
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2 Schrödingerova jednadžba i primjene

2.1 Valna svojstva čestica

Prema de Broglievom postulatu svakoj čestici impulsa (količine gibanja) p pridružena je

valna duljina λ prema relaciji:

λ =
h

p
(2.1)

gdje je h Planckova konstanta.

U nerelativističkoj aproksimaciji (K ≪ E0, K – kinetička energija čestice, E0 = mc2 -

energija mirovanja) vrijedi:

p = mv (2.2)

K =
p2

2m
(2.3)

gdje je v brzina čestice. Ako uvjet K ≪ E0 nije zadovoljen trebaju se koristiti relativističke

jednadžbe za energiju:

E = K +mc2 (2.4)

E2 =
(
mc2

)2
+ (pc)2 (2.5)

i količinu gibanja:

p =
mv√
1− v2

c2

(2.6)

Čestica se u kvantnoj fizici opisuje valnom funkcijom. Za razliku od ravnog vala koji je

potpuno delokaliziran te ima dobro definiranu valnu duljinu λ (odnosno valni broj k), čestica

se zamǐslja u obliku valnog paketa – superpozicije (zbroja) velikog broja ravnih valova, koji

se širi prostorom i koji je lokaliziran u jednom dijelu prostora. Valni paket sadrži velik broj

valnih brojeva te općenito kružna frekvencija pokazuje funkcijsku ovisnost o valnom broju,

tj. vrijedi ω = ω(k), a valni brojevi ravnih valova se kontinuirano mijenjaju duž nekog

intervala.

Razmatra se obitelj sinusoidalnih valova (istih amplituda) s kontinuiranim raspodjelama

valnih brojeva k oko vrijednosti k0 (zbog jednostavnosti se zanemari vremenska ovisnost u

valnoj jednadžbi):

yk(x) = A cos(kx) k0 −
∆k

2
≤ k ≤ k0 +

∆k

2
(2.7)

Potraži se superpozicija takvih valova:

y(x) =

∫
yk(x)dk (2.8)
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Vrijedi:

y(x) =
2A

x
sin(∆kx) cos(k0x) (2.9)

Ovakav valni oblik se zove valni paket. Član 2A
x
sin(∆kx) opisuje envelopu valnog paketa,

dok faktor cos(k0x) opisuje prostorne oscilacije unutar envelope. Valni paket je entitet koji

posjeduje i čestična i valna svojstva odnosno lokaliziran je u dijelu prostora (svojstvo čestice)

i pokazuje periodične oscilacije u dijelovima prostora (valno svojstvo).

Razlikuju se grupna i fazna brzina valnog paketa (brzina oscilacija unutar valnog paketa

može biti različita od brzine kojom valni paket putuje kroz prostor). Grupna brzina vg je

brzina kojom se valni paket širi prostorom:

vg =
dω

dk
(2.10)

gdje je ω kružna frekvencija, a k valni broj definiran kao:

k =
2π

λ
(2.11)

Fazna brzina vϕ je brzina kojom se širi mjesto iste faze:

vϕ =
ω

k
(2.12)

2.2 Heisenbergove relacije neodredenosti

U kvantnoj mehanici se ne mogu istovremeno mjeriti odredene fizičke veličine npr. impuls i

položaj (koordinata) čestice ili energija i vrijeme. Što se bolje poznaje impuls čestice, ima

se manje informacija o njenom položaju i obratno. To je posljedica Heisenbergovih relacija

neodredenosti:

∆x ·∆p ≥ h̄ (2.13)

gdje je ∆x neodredenost koordinate čestice, a ∆p neodredenost impulsa čestice. Stroga

definicija neodredenosti neke fizičke veličine y je:

∆y =

√
y2 − ȳ2 (2.14)

gdje je ȳ prosječna vrijednost fizičke veličine y, a y2 prosječna vrijednost od y2.

Takoder vrijedi:

∆E ·∆t ≥ h̄ (2.15)

gdje je ∆E neodredenost energije čestice, a ∆t neodredenost vremena.
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2.3 Schrödingerova jednadžba u jednoj dimenziji

U kvantnoj mehanici čestica (sistem) se opisuje pomoću valne funkcije. Valna funkcija se

dobiva rješavanjem Schrödingerova jednadžbe za dani problem. Schrödingerova jednadžba je

postulat (ona se ne izvodi) i njeno značenje u kvantnoj mehanici je slično drugom Newtono-

vom postulatu u klasičnoj fizici. Prema tome, temeljna jednadžba nerelativističke kvantne

mehanike je Schrödingerova jednadžba:

− h̄2

2m

∂2Ψ

∂x2
+ U(x, t)Ψ = ih̄

∂Ψ

∂t
(2.16)

To je parcijalna diferencijalna jednadžba drugog reda pri čemu je U(x, t) potencijalna energija

u kojoj se kreće čestica, a Ψ(x, t) valna funkcija čestice.

Za danu potencijalnu energiju U(x, t) rješavanjem Schrödingerove jednadžbe dobiva se valna

funkcija čestice Ψ(x, t). Valna funkcija čestice sadrži sve informacije koje se mogu saznati

o čestici. Ako potencijalna energija ne ovisi o vremenu U = U(x), može se pokazati da

će energija čestice (sistema) biti očuvana u vremenu (E = konst.). Ovakva stanja sistema

(čestice) se nazivaju stacionarnim stanjima, budući da je energija sistema očuvana u vremenu.

U tom slučaju rješenje Schrödingerove jednadžbe je dano s:

Ψ(x, t) = ψ(x)e−iωt (2.17)

gdje je fukcija ψ rješenje stacionarne (vremenski neovisne) Schrödingerove jednadžbe:

− h̄2

2m

d2ψ

dx2
+ U(x)ψ(x) = Eψ(x) (2.18)

a E je ukupna energija čestice (iz de Broglievog postulata E = h̄ω). Funkcija ψ(x) se naziva

i prostorni dio valne funkcije. Za većinu jednostavnih problema u kvantnoj mehanici potenci-

jalna energija ne ovisi o vremenu i problem se svodi na rješavanje stacionarne Schrödingerove

jednadžbe. Rješavanjem jednadžbe (2.18) dobivaju se vrijednosti valnih funkcija i energija

čestice (sistema).

Ne može se odrediti točan položaj čestice već samo vjerojatnost da se čestica nalazi u nekom

dijelu prostora. Gustoća vjerojatnosti dana je s:

ρ(x, t) = Ψ(x, t)Ψ∗(x, t) = |Ψ(x, t)|2 (2.19)

pri čemu je Ψ∗(x, t) konjugirano kompleksna vrijednost funkcije Ψ(x, t).

Vjerojatnost nalaženja čestice u dijelu prostora omedenog koordinatama x1 i x2 jednaka je:

w =

∫ x2

x1

ρ(x, t)dx (2.20)
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U slučaju da potencijalna energija ne ovisi o vremenu, dovoljno je razmatrati samo prostorni

dio valne funkcije, budući da vrijedi:

ρ(x, t) = |Ψ(x, t)|2 = |ψ(x)|2 (2.21)

Vjerojatnost nalaženja čestice u dijelu prostora omedenog koordinatama x1 i x2 tada je

jednaka:

w =

∫ x2

x1

|ψ(x)|2dx (2.22)

Budući da će se u sklopu kolegija Moderna fizika I proučavati samo slučajevi kada potenci-

jalna energija ne ovisi o vremenu, nadalje će se razmatrati samo stacionarna Schrödingerova

jednadžba i prostorni dio valne funkcije ψ(x), koji će se, zbog jednostavnosti, zvati valna

funkcija čestice (budući da je vremenski dio predstavljen samo fazom valne funkcije e−iωt i

ne utječe na vjerojatnost nalaženja čestice u prostoru).

Svojstva valne funkcije ψ(x):

a) Uvjet normalizacije valne funkcije:∫ ∞

−∞
|ψ(x)|2dx = 1 (2.23)

b) U Schrödingerovoj jednadžbi se pojavljuje druga derivacija valne funkcije d2ψ(x)
dx2

– da

bi funkcija ψ(x) imala drugu derivaciju ψ(x) i dψ(x)
dx

trebaju biti neprekidne funkcije.

c) Valna funkcija reprezentira vjerojatnost nalaženja čestice u prostoru – rješenja Schrödingerove

jednadžbe koja teže u beskonačnost u nekom dijelu prostora odbacuju se kao nefizi-

kalna.

d) Vjerojatnost nalaženja čestice u dijelu prostora a < x < b:
∫ b
a
|ψ(x)|2dx.

e) Prosječna (očekivana) vrijednost fizičke veličine f(x) za česticu u stanju opisanom

valnom funkcijom ψ(x):

⟨f(x)⟩ =
∫ ∞

−∞
|ψ(x)|2f(x)dx (2.24)

2.4 Slobodna čestica

Slobodnom česticom se naziva čestica koja se giba u konstantnom potencijalu, U(x) = konst.

Tada se može staviti U(x) = 0 (jer se nulta razina potencijalne energije može proizvoljno

birati). Stacionarna Schrödingerova jednadžba za ovakav problem je dana s:

− h̄2

2m

d2ψ

dx2
= Eψ(x) (2.25)
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Rješenje Schrödingerove jednadžbe za česticu s energijom E je tada dano s:

ψ(x) = Aeikx +Be−ikx (2.26)

gdje su A i B brojčane konstante (amplitude ravnog vala), a parametar k:

k =

√
2mE

h̄2
(2.27)

Prvi dio predstavlja ravni val koji se širi u pozitivnom smjeru osi x, a drugi dio je ravni val

koji se širi u negativnom smjeru osi x. Energija E čestice i valni vektor k mogu poprimiti

proizvoljne vrijednosti (nisu kvantizirani).

2.5 Čestica u jednodimenzionalnoj kutiji (beskonačna

pravokutna potencijalna jama)

Pretpostavlja se da je čestica zatočena u dijelu prostora 0 ≤ x ≤ L i da ne može izaći iz

njega (slika 2). Ovakav jednostavni model se može primijeniti npr. na slučaj elektrona koji

se giba duž konačne nanožice (gibanje je ograničeno na jednu dimenziju).

Potencijalna energija za ovakav problem dana je s:

U(x) = 0 za 0 < x < L

U(x) = ∞ za x = 0 i x = L
(2.28)

Slika 2: Beskonačna pravokutna potencijalna jama

Problem se svodi na rješavanje vremenski neovisne Schrödingerove jednadžbe uz rubne

uvjete:

ψ(x) = 0 za x = 0 i x = L (2.29)
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Koristi se uvjet na neprekidnost valne funkcije: izvan kutije je ψ(x) = 0 (čestica ne može

izaći iz kutije), pa istu vrijednost valna funkcija treba imati i u rubnim točkama x = 0 i

x = L. Rješenja stacionarne Schrödingerove jednadžbe (odnosno valne funkcije i energije

čestice) uz dane rubne uvjete su:

ψn(x) =

√
2

L
sin

(nπ
L
x
)

(2.30)

En =
h2

8mL2
n2 n = 1, 2, 3, 4, . . . (2.31)

Vidi se da je energijski spektar kvantiziran, tj. čestica može poprimiti samo odredene (dis-

kretne) vrijednosti energije.

2.6 Čestica u konačnoj pravokutnoj potencijalnoj jami

U ovom se slučaju razmatra gibanje čestice u potencijalu oblika (potencijalnoj jami sa zido-

vima konačne visine):

U(x) = U0 za x < 0 i x > L

U(x) = 0 za 0 ≤ x ≤ L
(2.32)

Slika 3: Konačna pravokutna potencijalna jama

Rješavanje Schrödingerove jednadžbe se razlikuju ovisno vrijedi li za energiju čestice da je

E < U0 (vezana stanja – čestica je vezana za područje oko potencijalne jame) ili E > U0 (ne-

vezana stanja – čestica se ponaša kao slobodna čestica). Rješenje stacionarne Schrödingerove
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jednadžbe za vezana stanja (E < U0) je dano s:

ψ(x) = A sin kx+B cos kx za 0 ≤ x ≤ L gdje je k =

√
2mE

h̄2

ψ(x) = Ceχx za x < 0 gdje je χ =

√
2m(U0 − E)

h̄2

ψ(x) = De−χx za x > L

(2.33)

Napomena: Energija čestice E je kvantizirana (poprima samo odredene, diskretne vrijed-

nosti), ali se ne može izraziti analički kao u slučaju beskonačne jame. Konstante A, B, C

i D se odreduju iz uvjeta neprekidnosti valne funkcije i njezine prve derivacije u točkama

x = 0 i x = L. Kao i u slučaju beskonačne potencijalne jame, unutar jame je valna funkcija

sinusoidalnog oblika, medutim valna funkcija sada ne ǐsčezava u točkama x = 0 i x = L, već

eksponencijalno opada u područjima izvan potencijalne jame.

2.7 Pravokutna potencijalna barijera i tuneliranje

Potencijalna barijera predstavlja fizički problem u kojem potencijalna energija sistema ima

najveću vrijednost. Najjednostavniji slučaj potencijalne barijere je pravokutna potencijalna

barijera, koju se može predstaviti potencijalnom energijom oblika:

U(x) = U0 za 0 ≤ x ≤ L

U(x) = 0 za x < 0 i x > L
(2.34)

Ovdje vrijednost U0 predstavlja visinu potencijalne barijere, a L širinu potencijalne barijere.

Slika 4: Pravokutna potencijalna barijera

Razmatra se čestica s energijom E < U0 koja je u početnom trenutku u području x < 0

22



Schrödingerova jednadžba i primjene

(lijevo od barijere). Rješenje stacionarne Schrödingerove jednadžbe je dano s:

ψ(x) = Aeikx +Be−ikx za x < 0 gdje je k =

√
2mE

h̄2

ψ(x) = Ceχx +De−χx za 0 ≤ x ≤ L gdje je χ =

√
2m(U0 − E)

h̄2

ψ(x) = Feikx za x > L

(2.35)

Član Aeikx predstavlja upadni ravni val (čestica upada na barijeru iz područja x < 0), dok

je Be−ikx reflektirani val (postoji vjerojatnost refleksije čestice na barijeri). S druge strane,

član Feikx je transmitirani val (slučaj kada čestica prode barijeru). Za 0 < x < L valna funk-

cija je opadajuća eksponencijalna funkcija. Konstante B, C, D i F se odreduju iz uvjeta

neprekidnosti valne funkcije i njezine prve derivacije u točkama x = 0 i x = L (konstanta A

je amplituda upadnog vala i ona se uzima kao zadana veličina za ovaj problem).

U slučaju pravokutne potencijalne barijere, dvije su značajne razlike izmedu kvantnome-

haničkog i klasičnog opisa problema:

� valna funkcija nije jednaka nuli unutar potencijalne barijere (zabranjeno područje

prema klasičnoj fizici!)

� čestica koja se u početnom trenutku nalazila u području x < 0 ima odredenu vjerojat-

nost da se nade u području x > L.

Pojava da čestica može
”
prijeći” potencijalnu barijeru iako ima energiju nižu od visine bari-

jere se naziva tuneliranje. Vjerojatnost tuneliranja je dana s:

T =
|amplituda transmitiranog vala|2

|amplituda upadnog vala|2
=

|F |2

|A|2
(2.36)

Vrijedi:

T = Ge−2χL (2.37)

gdje je:

G =
16E

U0

(
1− E

U0

)
(2.38)

χ =

√
2m(U0 − E)

h̄2
(2.39)
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2.8 Linearni harmonijski oscilator

Po deiniciji linearni harmonijski oscilator je čestica (sistem) koji se giba u polju potencijalne

energije oblika U(x) = mω2

2
x2 gdje je m masa čestice, a ω kružna frekvencija. Rješenja

stacionarne Schrödingerove jednadžbe za potencijalnu energiju ovakvog oblika su funkcije:

ψn(x) = Ane
−mω

2h̄
x2Hn

(√
mω

h̄
x

)
, n = 0, 1, 2, 3, 4, . . . (2.40)

gdje su An normalizacijske konstante, a funkcije Hn(x) se zovu Hermiteovi polinomi.

Energija linearnog harmonijskog oscilatora dana je s:

En =

(
n+

1

2

)
h̄ω (2.41)

U slučaju linearnog harmonijskog oscilatora, kvantni broj n u potpunosti odreduje kvantno

stanje čestice, tj. valnu funkciju i energiju čestice. Prvih nekoliko Hermiteovih polinoma:

H0(y) = 1

H1(y) = 2y

H2(y) = 4y2 − 2

H3(y) = 8y3 − 12y

(2.42)

pri čemu je y =
√

mω
h̄
x.

2.9 Schrödingerova jednadžba u 3-D

Stacionarna Schrodingerova jednadžba u 3-D ima oblik:

− h̄2

2m

(
d2ψ

dx2
+

d2ψ

dy2
+

d2ψ

dz2

)
+ U(x, y, z)ψ(x, y, z) = Eψ(x, y, z) (2.43)

Svojstva Schrödingerove jednadžbe te valne funkcije su ista kao i kod 1-D slučaja, samo što

su sada valna funkcija i potencijalna energija čestice funkcije tri prostorne koordinate x, y i

z. Vjerojatnost nalaženja čestice u dijelu prostora volumena V je sada dana s:

w =

∫
V

|ψ(x, y, z)|2dxdydz (2.44)

Uvjet normalizacije valne funkcije je sada:∫
V

|ψ(x, y, z)|2dxdydz = 1 (2.45)
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gdje volumen V obuhvaća cijeli prostor.

2.10 Čestica u 3-D kutiji

Pretpostavlja se da je gibanje čestice ograničeno u dijelu prostora 0 < x < L, 0 < y < L,

0 < z < L (čestica je zarobljena u dijelu prostora oblika kocke i ne može izaći iz njega).

Potencijalna energija za ovakav slučaj može se predstaviti s:

U(x, y, z) = 0 za 0 < x < L, 0 < y < L, 0 < z < L

U(x, y, z) = ∞ za x = 0, L; y = 0, L; z = 0, L
(2.46)

Rješava se Schrödingerova jednadžba u 3-D u dijelu prostora 0 < x < L, 0 < y < L,

0 < z < L (izvan je valna funkcija jednaka nuli):

− h̄2

2m

(
d2ψ

dx2
+

d2ψ

dy2
+

d2ψ

dz2

)
= Eψ(x, y, z) (2.47)

Rubni uvjeti za ovakav problem su dani s:

ψ(x, y, z) = 0 za x = 0 i x = L

ψ(x, y, z) = 0 za y = 0 i y = L

ψ(x, y, z) = 0 za z = 0 i z = L

(2.48)

Gornja jednadžba se može riješiti separacijom varijabli, odnosno valna funkcija se napǐse kao

umnožak triju funkcija, pri čemu svaka od tih funkcija ovisi samo o jednoj varijabli:

Ψ(x, y, z) = X(x)Y (y)Z(z) (2.49)

gdje svaka pojedinačna funkcija zadovoljava rubne uvjete:

X(x) = 0 za x = 0 i x = L

Y (y) = 0 za y = 0 i y = L

Z(z) = 0 za z = 0 i z = L

(2.50)

Valne funkcije čestice su dane s:

Ψ(x, y, z) = C sin
(nxπ
L
x
)
sin

(nyπ
L
y
)
sin

(nzπ
L
z
)

(2.51)

konstanta C se može izračunati iz uvjeta normalizacije valne funkcije, dok su energije čestice:

E =
h̄2π2

2mL

(
n 2
x + n 2

y + n 2
z

)
nx, ny, nz = 1, 2, 3, . . . (2.52)
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Kvantno stanje čestice (valna funkcija čestice i njezina energija) su u potpunosti opisani s

tri kvantna broja nx, ny, nz.

2.11 Vodikov atom

Valna funkcija vodikovog atoma dobije se rješavanjem stacionarne 3-D Schrödingerove jed-

nadžbe za potencijalnu energiju oblika U(r⃗) = − 1
4πε0

e2

r
gdje je r udaljenost izmedu elektrona

i jezgre (protona u slučaju atoma vodika). Budući da vrijedi m(proton) ≫ m(elektron),

može se pretpostaviti da pozitivan naboj (proton)
”
miruje” u ishodǐstu koordinatnog sus-

tava, dok je elektron u vezanom stanju u području oko jezgre. Budući da potencijalna

energija ovisi samo o udaljenosti elektrona od jezgre r, jednostavnije je Schrödingerovu jed-

nadžbu rješavati prelaskom na sferne koordinate r, θ i φ. Stacionarna 3-D Schrödingerova

jednadžba u sfernim koordinatama ima oblik:

− h̄2

2m

[
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂φ2

]
+ U(r⃗)ψ = Eψ (2.53)

gdje je ψ = ψ(r, θ, φ). Rješavanje Schrödingerove jednadžbe za vodikov atom u sfernim

koordinatama svodi se na metodu separacije varijabli, tj. valna funkcija se može prikazati

kao umnožak tri funkcije od kojih svaka ovisi o samo jednoj od koordinata:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (2.54)

gdje je:

R(r) - radijalni dio valne funkcije

Θ(θ)- polarni dio valne funkcije

Φ(φ) - azimutalni dio valne funkcije.

Fizikalno dozvoljena rješenja Schrödingerove jednadžbe tada trebaju zadovoljavati rubne

uvjete:

a) lim
r→∞

R(r) → 0 (jer je elektron lokaliziran u području oko jezgre atoma)

b) fukcije Θ(θ) i Φ(φ) trebaju poprimati konačne vrijednosti za sve vrijednosti kutova θ

i φ

c) Φ(φ) je periodična funkcija s periodom 2π.

Separacijom varijabli dobivaju se tri nezavisne diferencijalne jednadžbe za funkcije R(r),

Θ(θ) i Φ(φ):

− h̄2

2mer2
d

dr

[
r2
dR(r)

dr

]
+

[
h̄2l(l + 1)

2mer2
+ U(r)

]
R(r) = ER(r) (2.55)
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1

sin θ

d

dθ

[
sin θ

dΘ(θ)

dθ

]
+

[
l(l + 1)− m 2

l

sin2 θ

]
Θ(θ) = 0 (2.56)

d2Φ(φ)

dφ2
+m 2

l Φ(φ) = 0 (2.57)

U rješenjima diferencijalnih jednadžbi za funkcije R(r), Θ(θ) i Φ(φ) koje zadovoljavaju rubne

uvjete pojavljuju se tri parametra (kvantna broja):

n = 1, 2, 3, 4, . . . glavni kvantni broj

l = 0, 1, 2, 3, . . . , n− 1 orbitalni kvantni broj

ml = 0,±1,±2,±3, . . . ,±l magnetski orbitalni kvantni broj

Prema tome, kvantno stanje elektrona u vodikovom atomu (valna funkcija elektrona) je

odredena s tri kvantna broja n, l, ml:

ψn,l,ml
(r, θ, φ) = Rn,l(r),Θl,ml

(θ)Φml
(φ) (2.58)

a) radijalni dio valne funkcije Rn,l(r) = e−αrf(r) gdje je f(r) polinom stupnja n− 1

b) polarni dio valne funkcije Θl,ml
(θ) – polinomi stupnja l koji sadrže potencije po sin θ i

cos θ

c) azimutalni dio valne funkcije Φml
(φ) = e−imlφ.

Energija vodikovog atoma ovisi samo o glavnom kvantnom broju n i dana je izrazom kao

kod Bohrova modela:

En = −mee
4

8ε 2
0

· 1

n2
= −13,6 eV

n2
(2.59)

Tablica 1: Prvih nekoliko valnih funkcija vodikovog atoma

n l ml Rn,l(r) Θl,ml
(θ) Φml

(φ)

1 0 0 2√
a 3
0

e−
r
a0

1√
2

1√
2π

2 0 0 1√
(2a0)

3

(
2− r

a0

)
e−

r
2a0

1√
2

1√
2π

2 1 0 1√
3(2a0)

3

r
a0
e−

r
2a0

√
3
2 cos θ

1√
2π

2 1 ±1 1√
3(2a0)

3

r
a0
e−

r
2a0

√
3
2 sin θ

1√
2π
e±iφ
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Prosječna vrijednost fizičke veličine koja ovisi samo o koordinati r može se izračunati prema

relaciji:

f̄(r) =

∞∫
0

r2f(r)|Rn,l(r)|2dr (2.60)

Vjerojatnost da se elektron nade na udaljenosti a < x < b od jezgre dana je s:

w =

b∫
a

r2f(r)|Rn,l(r)|2dr (2.61)
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3 Metali i poluvodiči

3.1 Metali

Kod čvrstih tijela atomi su rasporedeni u kristalnu rešetku. Elektronska struktura čvrstih

tijela može se predočiti na sljedeći način:

– Elektroni na unutarnjim orbitalama atoma ostaju vezani za svoje matične atome (nji-

hova valna funcija je lokalizirana u području matičnih atoma) i njihova kvantna stanja

ostaju približno jednaka stanjima u izoliranom atomu.

– Valna funkcija valentnih atoma postaje delokalizirana (oni vǐse nisu čvrsto vezani za

matične atome), odnosno njihova kvantna stanja se znatno razlikuju od onih u izoli-

ranom atomu. Kvantna stanja valentnih elektrona su rasporedena unutar energijskih

vrpci, unutar kojih se može smatrati da se energija mijenja kontinuirano. Energijske

vrpce u kojima se mogu nalaziti elektroni razdvojene su zabranjenim zonama, u kojima

nema dozvoljenih energijskih razina.

Najvǐsa energijska vrpca kod metala u kojoj još uvijek ima elektrona, vodljiva vrpca, samo

je djelomično popunjena – postoje nepopunjeni energijske razine u koje elektroni mogu pre-

laziti. Zbog toga metali mogu voditi električnu struju i na temperaturi apsolutne nule.

Model slobodnih elektrona u metalu (model slobodnog elektronskog plina)

Najjednostavniji opis metala daje model slobodnih elektrona u metalu. Prema tom modelu,

jedan ili vǐse valentnih elektrona su izdvojeni iz matičnog atoma i mogu se slobodno kre-

tati unutar metala. Ti elektroni ne medudjeluju s ionima kristalne rešetke niti s ostalim

elektronima. Slobodni elektroni su zadržani unutar metala potencijalnom barijerom na ru-

bovima metala, koja ih drži zarobljenima unutar volumena materijala. Pretpostavlja se da

je potencijalna energija slobodnih elektrona nula unutar metala, tj. da imaju samo kinetičku

energiju.

Broj vodljivih elektrona Ne u nekom uzorku izgradenom od atoma samo jednog elementa

može se odrediti pomoću relacije:

Ne = Naw (3.1)

gdje je Na broj atoma u uzorku, a w valencija atoma danog elementa. Vrijedi:

Na =
m

ma

(3.2)

Prema modelu slobodnih elektrona u metalu, ponašanje elektrona u metalu može se predočiti

česticom u 3-D kutiji (ako se volumen metala reprezentira kockom duljine brida L). Energije

takvog elektrona su dane relacijom (2.52). Medutim, kristal metala zauzima makroskopski
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volumen (ovdje je duljina brida kocke L≫ de Broglieva valna duljina elektrona). Budući da

je volumen metala (3-D kutije) makroskopskih dimenzija, a broj elektrona u kutiji velik (reda

veličine broja atoma u materijalu), postoji ogroman broj kvantnih stanja i energijskih razina

u takvom sistemu, pri čemu su susjedne energijske razine veoma bliskih energija. Radi toga

se energijske razine vǐse ne mogu razmatrati kao razdvojene razine, već se energije elektrona

razmatraju kao da energijske razine čine kontinuiranu raspodjelu energija.

Definira se gustoća stanja g(E) – broj kvantnih stanja dn unutar infinitezimalnog energijskog

intervala dE oko energije E (odnosno broj kvantnih stanja izmedu energija E i E + dE)

podijeljen s jediničnim intervalom energije:

g(E) =
dn

dE
=

8
√
2m

3
2πV

h3

√
E (3.3)

gdje je m = 9,11 · 10−31 kg masa elektrona, V volumen uzorka, a h = 6,626 · 10−34 J s

Planckova konstanta.

Raspodjela elektrona po različitim kvantnim stanjima pri odredenoj temperaturi T dana

je s Fermi-Diracovom funkcijom raspodjele. Vjerojatnost da je kvantno stanje energije E

zaposjednuto pri temperaturi T :

f(E) =
1

1 + e
E−EF

kT

(3.4)

gdje je EF Fermijeva energija, a k = 1,38 · 10−23 J K−1 Boltzmannova konstanta. Fermijeva

energija EF predstavlja jedan od termodinamičkih parametara sistema (kemijski potencijal).

Općenito EF = EF(T,N) gdje je N ukupni broj čestica u sistemu.

Fermijeva energija se mijenja s temperaturom prema relaciji:

EF ≈ EF0

[
1 +

π2

12

(
kT

EF0

)2
]

(3.5)

gdje je EF0 Fermijeva energija na temperaturi apsolutne nule. Medutim, za temperaturni

interval od T = 0K do nekoliko stotina kelvina može se uzeti da vrijedi EF ≈ EF0 (tj.

u širokom temperaturnom intervalu može se uzeti da EF ne ovisi o temperaturi i da ima

vrijednost kao na temperaturi T = 0K).

Fermi-Diracova funkcija raspodjele na T = 0K ima vrijednost:

f(E) =

{
1 E < EF

0 E > EF

(3.6)

Na temperaturi T = 0K sva stanja s energijom manjom od EF su popunjena, dok su sva

stanja s energijom većom od EF prazna. Računa se broj elektrona dNe koji zauzimaju
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energijske razine unutar intervala energija E i E + dE:

dNe = f(E)dn (3.7)

gdje je f(E) vjerojatnost da je energijska razina E popunjena, a dn broj kvantnih stanja

unutar intervala energija E i E + dE. Vrijedi:

dn = g(E)dE (3.8)

gdje je g(E) gustoća stanja pa slijedi:

dNe = f(E)g(E)dE (3.9)

Koristeći vrijednost Fermi-Diracove funkcije raspodjele na temperaturi T = 0K dobiva se:

EF =
1

8

(
3

π

) 2
3 h2

m
n

2
3 = 0,121

h2

m
n

2
3 (3.10)

gdje je n koncentracija slobodnih elektrona, a m masa elektrona. Ukupna energija elektrona

koji zauzimaju energijske razine unutar intervala energija E i E + dE:

EdNe = Ef(E)g(E)dE (3.11)

pa je ukupna energija svih elektrona u sistemu:

Etot =

∫
EdNe =

∫ ∞

0

Ef(E)g(E)dE (3.12)

Na temperaturi T = 0K ukupna energija svih elektrona iznosi Etot =
3
5
NeEF.

Prosječna energija po elektronu na temperaturi T = 0K iznosi Ē = 3
5
EF.

Definiraju se veličine:

– Fermijeva brzina vF - brzina koji bi imao klasični elektron čija je kinetička energija

jednaka Fermijevoj energiji:

EF =
mv 2

F

2
(3.13)

– Fermijeva temperatura TF - temperatura na kojoj klasični elektron ima termičku ener-

giju jednaku Fermijevoj energiji:

EF = kTF (3.14)

Izlazni rad i izlaz elektrona iz metala

Izlazni radWi je najmanji iznos energije koji treba dati elektronima na temperaturi apsolutne
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nule da bi mogli napustiti metal. Vrijedi:

Wi = EB − EF (3.15)

gdje je EB potencijalna barijera, a EF Fermijeva energija.

Schottkyev efekt je pojava snižavanja potencijalne barijere metala kada je površina metala

izložena ubrzavajućem vanjskom električnom polju. U tom slučaju izlazni rad se smanjuje

za iznos:

∆Wi = e

√
eE

4πε0
(3.16)

gdje je E jakost vanjskog električnog polja, a e = 1,6 · 10−19 C naboj elektrona.

Zagrijavanjem metala iz njega izlaze elektroni i ta se pojava naziva termionska emisija.

Gustoća struje termionske emisije J dana je s:

J = AT 2e−
Wi
kT (3.17)

gdje je A konstanta koja ovisi o materijalu, Wi izlazni rad, a T temperatura. Ako se uz

zagrijavanje površina metala izloži djelovanju ubrzavajućeg vanjskog električnog polja jakosti

E, struja se poveća na:

J ′ = Je
0,44

√
E

T (3.18)

gdje je J gustoća struje bez priključenog vanjskog polja.

Električna vodljivost metala

Ako se na metalni vodič priključi električno polje E⃗, njime poteče gustoća struje J⃗ dana s:

J⃗ = σ · E⃗ (3.19)

gdje je σ vodljivost materijala. Vrijedi:

ρ =
1

σ
(3.20)

gdje je ρ otpornost materijala. Na slobodne elektrone unutar metala u vanjskom električnom

polju E⃗ djeluje sila F⃗ = −eE⃗, odnosno elektron dobiva akceleraciju a⃗ = − e
m
E⃗ (F⃗ = ma⃗).

Medutim, vodljivi elektroni unutar metala doživljavaju sudare (raspršuju se na vibrirajućim

atomima u kristalu i nečistoćama unutar kristala), odnosno elektron se zbog djelovanja

vanjskog polja ubrzava samo u kratkim vremenskim intervalima, nakon čega zbog sudara

gubi brzinu. Uzimaju se sljedeće pretpostavke:

� Elektron se ubrzava (u prosjeku) samo za vrijeme τ – prosječno vrijeme izmedu sudara.

32



Metali i poluvodiči

� Zbog raspršenja elektrona – elektron u vanjskom polju dobije neku prosječnu brzinu u

smjeru suprotnom od polja, driftnu brzinu v⃗d:

v⃗d = a⃗τ = −eτ
m
E⃗ (3.21)

Za gustoću struje vrijedi:

J⃗ = −env⃗d (3.22)

pa je:

σ =
ne2τ

m
(3.23)

gdje je e naboj elektrona, n koncentracija slobodnih elektrona u metalu, τ prosječno vrijeme

izmedu sudara elektrona, a m masa elektrona. Definira se pokretljivost elektrona u metalu

µ kao:

µ =
eτ

m
(3.24)

pa je:

σ = neµ (3.25)

Prema tome, driftna brzina vd je brzina usmjerenog gibanja elektrona pod utjecajem vanjskog

električnog polja E (odnosno dodatna brzina koja se superponira na nasumično gibanje

elektrona unutar metala zbog djelovanja vanjskog električnog polja) i vrijedi:

vd = µE =
eE

m
τ (3.26)

3.2 Poluvodiči

Za razliku od metala, kod poluvodiča na temperaturi apsolutne nule vrpca najveće energije

koja je potpuno ispunjena elektronima (valentna vrpca) ujedno je i vrpca najveće energije

koja sadrži elektrone. Sljedeća energijska vrpca (vodljiva vrpca) na temperaturi T = 0K ne

sadrži niti jedan elektron. Vodljiva i valentna vrpca razdvojene su tzv. zabranjenom vrpcom.

Zato poluvodiči ne vode struju na temperaturi apsolutne nule. Povećanjem temperature,

valentni elektroni, koji stvaraju vezu izmedu susjednih atoma u poluvodiču, mogu apsorbirati

dovoljno energije zbog termalnih vibracija atoma u rešetci, čime mogu napustiti svoje mjesto

u kristalu i postati slobodni elektroni u materijalu. Odnosno, povećanjem temperature,

elektron iz valentne vrpce može apsorbirati termalnu energiju i prijeći u vodljivu vrpcu.

Prelaskom elektrona u vodljivu vrpcu, u valentnoj vrpci ostaje prazno kvantno stanje, koje

se pri priključenju poluvodiča na vanjski napon efektivno ponaša kao pozitivan naboj i to

mjesto se naziva šupljina. Prema tome, u poluvodičima postoje dvije vrste nosioca naboja –

elektroni i šupljine. Tipični poluvodiči su elementi iz IV. grupe periodnog sustava elemenata:

33



Metali i poluvodiči

silicij i germanij.

Razlikuju se dvije vrste poluvodiča:

� Intrinzični poluvodiči – sastoje se od atoma samo jednog elementa i kod njih je kon-

centracija elektrona u vodljivoj vrpci jednaka koncentraciji šupljina u valentnoj vrpci.

� Ekstrinzični poluvodiči – materijalu koji čini poluvodič dodaju se primjese kako bi se

povećala koncentracija nosioca naboja u poluvodiču. Ako se dodaju donorske primjese

(kao što su N, P ili As u kristalu silicija), u poluvodiču će većinski nosioci naboja biti

elektroni i takvi poluvodiči se zovu N-tipovi poluvodiča. Ako se u poluvodički materijal

dodaju akceptorske primjese (kao što su B, Al ili Ga u kristalu silicija), većinski nosioci

u poluvodiču će biti šupljine i takvi se materijali nazivaju P-tipovi poluvodiča.

Zakon termodinamičke ravnoteže u poluvodiču zapisuje se kao:

n 2
i = n0p0 (3.27)

gdje je ni intrinzična koncentracija nosioca naboja, n0 ravnotežna koncentracija elektrona u

vodljivoj vrpci, a p0 ravnotežna koncentracija šupljina u valentnoj vrpci.

Intrinzična koncentracija nosioca naboja u poluvodiču može se izračunati pomoću relacije:

n 2
i = CT 3e−

Eg
kT (3.28)

gdje je C konstanta koja ovisi o materijalu, T apsolutna temperatura, Eg širina zabranjene

vrpce, a k = 1,38 · 10−23 J K−1 Boltzmannova konstanta.

Relacije (3.27) i (3.28) vrijede općenito i za intrinzične i za ekstrinzične poluvodiče.

Kod intrinzičnih poluvodiča, nosioci naboja (elektroni u vodljivoj i šupljine u valentnoj

vrpci), mogu nastati jedino termičkim pobudenjem elektrona iz valentne u vodljivu vrpcu.

Stoga za intrinzični poluvodič vrijedi:

ni = n0 = p0 (3.29)

S druge strane, ekstrinzični poluvodiči sadrže donorske i/ili akceptorske primjese te kod njih

prevladava jedan tip nosioca naboja. Donorski i akceptorski atomi se ioniziraju u materijalu:

donorski atomi postaju pozitivni ioni, budući da predaju elektron materijalu, a akceptorski

atomi postaju negativni ioni, budući da primaju elektron iz materijala. S obzirom na to da

poluvodič kao cjelina treba biti električki neutralan, za ekstrinzične poluvodiče vrijedi:

n0 +NA = p0 +ND (3.30)
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gdje je NA kocentracija akceptorskih primjesa, a ND koncentracija donorskih primjesa.

Općenito, ravnotežna koncentracija elektrona u vodljivoj vrpci se računa kao:

n0 = NCe
−EC−EF

kT (3.31)

gdje je NC efektivna gustoća kvantnih stanja u vodljivoj vrpci, EC energija dna vodljive

vrpce, a EF Fermijeva energija u poluvodiču. Efektivna gustoća kvantnih stanja u vodljivoj

vrpci se računa kao:

NC = 2

(
2πm ∗

e kT

h2

) 3
2

(3.32)

gdje je m ∗
e efektivna masa elektrona.

S druge strane, ravnotežna koncentracija šupljina u valentnoj vrpci se računa kao:

p0 = NVe
−EF−EV

kT (3.33)

gdje je NV efektivna gustoća kvantnih stanja u valentnoj vrpci, EF Fermijeva energija u

poluvodiču, a EV energija vrha valentne vrpce.

Efektivna gustoća kvantnih stanja u valentnoj vrpci se računa kao:

NV = 2

(
2πm ∗

hkT

h2

) 3
2

(3.34)

gdje je m ∗
h efektivna masa šupljina. Ako se za nultu razinu energije stavi vrh valentne vrpce,

tj. uzme EV = 0, tada (uz EC − EV = Eg) relacije (3.31) i (3.33) postaju:

n0 = NCe
EF−Eg

kT (3.35)

p0 = NVe
−EF
kT (3.36)

Za intrinzični poluvodič vrijedi n0 = p0 pa ako se izjednače relacije (3.31) i (3.33) može se

odrediti položaj Fermijevog nivoa u poluvodiču:

EF = EV +
1

2
Eg −

3

4
kT ln

(
m ∗
e

m ∗
h

)
(3.37)

Za m ∗
e ≈ m ∗

h slijedi:

EF = EV +
1

2
Eg (3.38)

odnosno Fermijev nivo leži u sredini zabranjenog pojasa (za instrinzični Si i Ge: m ∗
e je nešto

malo veći od m ∗
h i EF je malo pomaknut prema valentnoj vrpci).

Kod ekstrinzičnih poluvodiča slobodni nosioci naboja nastaju na dva načina: ionizacijom

dopanata i termalnim pobudivanjem elektrona iz valentne vrpce u vodljivu vrpcu. Na sobnoj

temperaturi su svi dopanti ionizirani: donorski atomi predaju elektrone u vodljivu vrpcu, a
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akceptorski atomi primaju elektrone (nastaju šupljine u valentnoj vrpci).

a) Za N-tip poluvodiča (uz NA=0) vrijedi:

– na sobnoj temperaturi i temperaturama manjim od sobne (T ≤ 300K) vrijedi

n0 ≈ ND, p0 =
n 2
i

n0
(n0 ≫ p0)

– iz n0 = NCe
EF−Eg

kT i n0 ≈ ND slijedi

EF = EC − kT ln

(
NC

ND

)
(3.39)

kod N-tipa poluvodiča je Fermijev nivo pomaknut prema vodljivoj vrpci

b) Za P-tip poluvodiča (uz ND=0) vrijedi:

– na sobnoj temperaturi i temperaturama manjim od sobne (T ≤ 300K) vrijedi

p0 ≈ NA, n0 =
n 2
i

p0
(n0 ≪ p0)

– iz p0 = NVe
−EF−EV

kT i p0 ≈ NA slijedi

EF = EV + kT ln

(
NV

NA

)
(3.40)

kod P-tipa poluvodiča je Fermijev nivo pomaknut prema valentnoj vrpci.

Ukupna gustoća struje u poluvodiču je dana zbrojem gustoća struja elektrona i šupljina:

J = noe(vd)e + poe(vd)h (3.41)

gdje je e elementarni naboj, (vd)e driftna struja elektrona, a (vd)h driftna struja šupljina.

Vrijedi:

(vd)e = µeE (3.42)

(vd)h = µhE (3.43)

gdje je µe pokretljivost elektrona u vodljivoj vrpci, µh pokretljivost šupljina u valentnoj

vrpci, a E jakost vanjskog električnog polja.

Kako je J = σE, za vodljivost poluvodiča vrijedi:

σ = n0eµe + p0eµp (3.44)

Slično kao i za metale, otpornost poluvodiča ρ se računa prema relaciji:

ρ =
1

σ
(3.45)
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3.3 Poluvodička dioda

Poluvodička dioda je elektronički element koji se sastoji od P-tipa i N-tipa poluvodiča u

električnom kontaktu. Dioda ima raznoliku primjenu u elektroničkim spojevima, gdje se

može koristiti kao sklopka, element za ispravljanje napona, optoelektronički element itd.

Razlikuje se propusna i nepropusna polarizacija poluvodičke diode u strujnim krugovima.

Ako se dioda spoji na izvor istosmjernog napona na način da je P strana diode na vǐsem

potencijalu od N strane, u vodenju struje sudjeluju većinski nosioci naboja (šupljine na P

strani i elektroni na N strani) te diodom prolazi struja. Ovakav tip polarizacije naziva se

propusnom polarizacijom diode. S druge strane, ako je N strana diode na vǐsem potencijalu

od P strane, kroz diodu prolazi samo struja malog iznosa, koja potječe od manjinskih nosioca

naboja (elektrona u P-tipu i šupljina u N-tipu poluvodiča). U ovom se slučaju kaže da je

dioda nepropusno polarizirana te se struja kroz diodu tada najčešće može zanemariti (za Ge

diode je struja nepropusne polarizacije reda veličine µA, a za Si diode nA). Ako se diodu

spoji na vanjski izvor istosmjernog napona U , struja kroz diodu može se računati prema

relaciji:

I = IS

(
e

U
UT − 1

)
(3.46)

gdje je IS struja manjinskih nosioca naboja, a:

UT =
kT

e
(3.47)

Predznak napona U uzima se na sljedeći način:

– za propusno polarizirani PN spoj U > 0

– za nepropusno polarizirani PN spoj U < 0

Propusna polarizacija poluvodičke diode:

Za temperaturu T = 300K vrijedi da je kT
e

= 25,875mV. Tada je U ≫ kT
e

za napone

U ≥ 0,1V i e
eU
kT ≫ 1 pa se može pisati:

I = ISe
eU
kT (3.48)

odnosno struja pokazuje eksponencijalnu ovisnost o priključenom naponu.

Nepropusna polarizacija poluvodičke diode:

Budući da je U < 0 na temperaturama bliskim sobnoj (T = 300K, kT
e
= 25,875mV) vrijedi

e
eU
kT ≪ 1 pa je I ≈ −IS (kroz diodu prolazi samo struja manjinskih nosioca naboja).
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Struja manjinskih nosioca naboja se može izračunati prema relaciji:

IS = Sen 2
i

(
Dh

NDLh
+

De

NALe

)
(3.49)

gdje je:

S - površina presjeka PN spoja

ni - intrinzična koncentracija nosioca naboja

Dh - difuzijska konstanta šupljina

De - difuzijska konstanta elektrona

ND - koncentracija donorskih primjesa na N-strani

NA - koncentracija akceptorskih primjesa na P-strani

Lh - difuzijska duljina šupljina

Le - difuzijska duljina elektrona.

Za difuzijske duljine vrijede relacije:

Lh =
√
Dhτh (3.50)

Le =
√
Deτe (3.51)

gdje τ označava vrijeme života manjinskih nosioca naboja: τe vrijeme života elektrona na

P-strani, a τh vrijeme života šupljina na N-strani. Difuzijske konstante elektrona i šupljina

se računaju pomoću relacija:

Dh = µh
kT

e
(3.52)

De = µe
kT

e
(3.53)

gdje je µh pokretljivost šupljina u valentnoj vrpci, a µe pokretljivost elektrona u vodljivoj

vrpci.

3.4 Hallov učinak

Razmatra se pravokutna pločica poluvodiča ili metala kroz koju prolazi struja i na koju

djeluje vanjsko magnetsko polje B⃗ orijentirano okomito na ravninu uzorka. U tom slučaju

na nosioce naboja q djeluje Lorentzova sila zbog koje dolazi do nakupljanja nosioca naboja uz

rub poluvodiča. Posljedica toga je uspostavljanje elektrostatskog polja
#  ”

EH i Hallova napona

UH kao razlike potencijala izmedu nasuprotnih rubova pločice. Polaritet Hallova napona

ovisi o predznaku nosioca naboja. U ravnoteži je rezultanta Lorentzove sile i elektrostatske
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sile koja djeluje na nosioce naboja zbog uspostave električnog polja
#  ”

EH jednaka nuli:

# ”

FL +
# ”

Fe = 0 (3.54)

q # ”vd × #”

B + q
#  ”

EH = 0 (3.55)

gdje je # ”vd driftna brzina nosioca naboja. Gustoća struje dana je s:

#”

J = nq # ”vd (3.56)

gdje je n koncentracija nosioca naboja pa vrijedi:

#  ”

EH = − 1

nq

#”

J × #”

B (3.57)

Hallova konstanta RH definira se kao:

RH =
1

nq
(3.58)

Ako se Hallov napon uvede kao:

EH =
UH

h
(3.59)

gdje je h širina pločice te izrazi gustoća struje pomoću struje I i debljine pločice d:

J =
I

hd
(3.60)

dobiva se:

UH = −BRH

d
I (3.61)

Hallov napon UH, struja I i magnetsko polje B su veličine koje se mjere izravno u eksperi-

mentu, što omogućava da se iz relacije (3.61) odredi Hallova konstanta RH, a time i predznak

i koncentracija nosioca naboja. Hallova konstanta se može izraziti pomoću pokretljivosti no-

sioca naboja µ i provodnosti materijala σ. Iz relacija:

J⃗ = σE⃗ (3.62)

# ”vd = µE⃗ (3.63)

slijedi:

σ = µRH (3.64)

pri čemu je električno polje E⃗ polje koje stvara struju I kroz pločicu, a ne Hallovo električno

polje.
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